Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197699961> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3197699961 abstract "Compositional reservoir simulation is one of the most powerful techniques currently available to the reservoir engineer upon which most reservoir development decisions rely on. According to the number of components used to describe the fluids there is an increasing demand for computational power due to the complexity and the iterative nature of the solution process. Phase stability and phase split computations often consume more than 50% of the simulation total CPU time as both problems need to be solved repeatedly and iteratively for each discretization block at each iteration of the non-linear solver. Therefore, speeding up these calculations is a research challenge of great interest. In this work, machine learning methods are proposed for the solving of the phase behavior problem. It is shown that under proper transformations, the unknown closed-form solution of the Equation-of-State based phase behavior formulation can be emulated by proxy models. The phase stability problem is treated by classifiers which label the fluid state in each block as either stable or unstable. For the phase split problem, regression models provide the prevailing equilibrium coefficients values given the feed composition, pressure and temperature. The development of these models is rapidly performed offline in an automated way, by utilizing the fluid tuned-EoS model prior to running the reservoir simulator. During the simulation run, rather than solving iteratively the phase behavior problem, the proxy models are called to provide non-iteratively direct answers at a constant, very small CPU charge regardless of the proximity to critical conditions. The proposed approach is presented in two-phase equilibria formulation but it can be extended to multi-phase equilibria applications. Examples demonstrate the advantages of this approach, the accuracy obtained in the calculations and the very significant CPU time reduction achieved with respect to conventional methods." @default.
- W3197699961 created "2021-09-13" @default.
- W3197699961 creator A5008889428 @default.
- W3197699961 creator A5047916287 @default.
- W3197699961 date "2012-06-04" @default.
- W3197699961 modified "2023-09-24" @default.
- W3197699961 title "Machine Learning Methods to Speed up Compositional Reservoir Simulation (SPE 154505)" @default.
- W3197699961 doi "https://doi.org/10.3997/2214-4609-pdb.293.h031" @default.
- W3197699961 hasPublicationYear "2012" @default.
- W3197699961 type Work @default.
- W3197699961 sameAs 3197699961 @default.
- W3197699961 citedByCount "0" @default.
- W3197699961 crossrefType "journal-article" @default.
- W3197699961 hasAuthorship W3197699961A5008889428 @default.
- W3197699961 hasAuthorship W3197699961A5047916287 @default.
- W3197699961 hasConcept C11413529 @default.
- W3197699961 hasConcept C126255220 @default.
- W3197699961 hasConcept C127413603 @default.
- W3197699961 hasConcept C134306372 @default.
- W3197699961 hasConcept C2524010 @default.
- W3197699961 hasConcept C2777210771 @default.
- W3197699961 hasConcept C2778668878 @default.
- W3197699961 hasConcept C2778770139 @default.
- W3197699961 hasConcept C33923547 @default.
- W3197699961 hasConcept C41008148 @default.
- W3197699961 hasConcept C45374587 @default.
- W3197699961 hasConcept C73000952 @default.
- W3197699961 hasConcept C78762247 @default.
- W3197699961 hasConceptScore W3197699961C11413529 @default.
- W3197699961 hasConceptScore W3197699961C126255220 @default.
- W3197699961 hasConceptScore W3197699961C127413603 @default.
- W3197699961 hasConceptScore W3197699961C134306372 @default.
- W3197699961 hasConceptScore W3197699961C2524010 @default.
- W3197699961 hasConceptScore W3197699961C2777210771 @default.
- W3197699961 hasConceptScore W3197699961C2778668878 @default.
- W3197699961 hasConceptScore W3197699961C2778770139 @default.
- W3197699961 hasConceptScore W3197699961C33923547 @default.
- W3197699961 hasConceptScore W3197699961C41008148 @default.
- W3197699961 hasConceptScore W3197699961C45374587 @default.
- W3197699961 hasConceptScore W3197699961C73000952 @default.
- W3197699961 hasConceptScore W3197699961C78762247 @default.
- W3197699961 hasLocation W31976999611 @default.
- W3197699961 hasOpenAccess W3197699961 @default.
- W3197699961 hasPrimaryLocation W31976999611 @default.
- W3197699961 hasRelatedWork W1996707465 @default.
- W3197699961 hasRelatedWork W2007348402 @default.
- W3197699961 hasRelatedWork W2025862724 @default.
- W3197699961 hasRelatedWork W2181561723 @default.
- W3197699961 hasRelatedWork W2183062183 @default.
- W3197699961 hasRelatedWork W2369050945 @default.
- W3197699961 hasRelatedWork W2556383846 @default.
- W3197699961 hasRelatedWork W2601858717 @default.
- W3197699961 hasRelatedWork W2746752577 @default.
- W3197699961 hasRelatedWork W2889044402 @default.
- W3197699961 hasRelatedWork W2911174873 @default.
- W3197699961 hasRelatedWork W2945397402 @default.
- W3197699961 hasRelatedWork W3046520192 @default.
- W3197699961 hasRelatedWork W3112637633 @default.
- W3197699961 hasRelatedWork W3152421980 @default.
- W3197699961 hasRelatedWork W3162052479 @default.
- W3197699961 hasRelatedWork W3177771711 @default.
- W3197699961 hasRelatedWork W3195280887 @default.
- W3197699961 hasRelatedWork W329794753 @default.
- W3197699961 hasRelatedWork W2130533762 @default.
- W3197699961 isParatext "false" @default.
- W3197699961 isRetracted "false" @default.
- W3197699961 magId "3197699961" @default.
- W3197699961 workType "article" @default.