Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197722559> ?p ?o ?g. }
- W3197722559 endingPage "949" @default.
- W3197722559 startingPage "941" @default.
- W3197722559 abstract "Sample pretreatment technology plays a vital role throughout the analysis of complex samples. Sample pretreatment can not only increase the concentration of trace targets in the sample, but also effectively eliminate interference from the sample matrix in instrumental analysis. Adsorbent materials are a key component of sample pretreatment technology. Therefore, the development of efficient and stable new adsorbent materials has acquired significance in research on pretreatment technology. Porous materials are advantageous for use in diverse applications, such as in adsorbents, when they possess controllable nanostructures, a tailored pore surface chemistry, and abundant porosity, and are inexpensive. Particularly in recent years, porous materials derived from metal-organic frameworks (MOFs) feature excellent properties, such as diverse morphology and structure, adjustable pore size, high specific surface area, good thermal stability, and chemical resistance. MOF-derived materials, when used as adsorbents for sample pretreatment, offer the following advantages: (1) The porous materials derived from MOFs typically possess a larger specific surface area than other porous materials. This characteristic is beneficial to improve the extraction capacity and extraction efficiency via an increase in the contact area between the materials and targets; (2) The microscopic porous structure of MOF-derived materials can be easily tuned (by controlling the temperature and time during pyrolysis, gas atmosphere, and heating rate), which is conducive to improve the selectivity of sample pretreatment methods; (3) The metal active sites can be evenly distributed. Owing to the ordered distribution of metal ions in the precursor MOFs and a good periodic framework structure, the metal active sites of the derivatives formed can still maintain a corresponding distance. These metal active sites will not form agglomerates and affect the extraction performance; conversely, other porous materials often require extremely complicated processes to achieve a uniform distribution; (4) Heteroatoms such as nitrogen and sulfur can be easily doped on the framework of MOF-derived porous materials. This doping enables the materials to induce additional interactions such as hydrogen bonding and π-π stacking for adsorbing target analytes. The excellent properties of MOF-derived materials make them promising for use in sample pretreatment. Novel sample pretreatment methods that use MOF-derived materials are constantly being developed. However, the use of MOF-derived materials is limited by the complex preparation process and high production cost of MOF precursors, along with difficulties in mass production. Further, the precise design or functionalization of MOF-derived materials according to the characteristics of targets is a new direction with immense challenges as well as application potential. This review summarizes the application of MOF-derived materials in sample pretreatment methods, including dispersive solid phase extraction (dSPE), magnetic solid phase extraction (MSPE), solid phase microextraction (SPME), stir bar sorptive extraction (SBSE), and dispersive micro solid phase extraction (DMSPE). The preparation methods, functional control, and enrichment efficiencies of various MOF-derived materials are also reviewed. Finally, the application prospects of MOF-derived materials in sample pretreatment are discussed to provide a clear outlook and reference for further related research." @default.
- W3197722559 created "2021-09-13" @default.
- W3197722559 creator A5003547177 @default.
- W3197722559 creator A5020803702 @default.
- W3197722559 creator A5043330570 @default.
- W3197722559 creator A5057821650 @default.
- W3197722559 creator A5079791518 @default.
- W3197722559 creator A5081091594 @default.
- W3197722559 date "2021-09-01" @default.
- W3197722559 modified "2023-09-23" @default.
- W3197722559 title "Research progress in application of metal-organic framework-derived materials to sample pretreatment" @default.
- W3197722559 cites W1872001489 @default.
- W3197722559 cites W1920514480 @default.
- W3197722559 cites W1969208844 @default.
- W3197722559 cites W1978777697 @default.
- W3197722559 cites W1985530487 @default.
- W3197722559 cites W1991204024 @default.
- W3197722559 cites W1994442450 @default.
- W3197722559 cites W2004550299 @default.
- W3197722559 cites W2006752376 @default.
- W3197722559 cites W2012084663 @default.
- W3197722559 cites W2022085591 @default.
- W3197722559 cites W2033799318 @default.
- W3197722559 cites W2038083860 @default.
- W3197722559 cites W2039257604 @default.
- W3197722559 cites W2050509601 @default.
- W3197722559 cites W2065453835 @default.
- W3197722559 cites W2081971417 @default.
- W3197722559 cites W2086725499 @default.
- W3197722559 cites W2095046805 @default.
- W3197722559 cites W2124744856 @default.
- W3197722559 cites W2164043498 @default.
- W3197722559 cites W216865328 @default.
- W3197722559 cites W2174457293 @default.
- W3197722559 cites W2178664191 @default.
- W3197722559 cites W2190719949 @default.
- W3197722559 cites W2263087642 @default.
- W3197722559 cites W2324278661 @default.
- W3197722559 cites W2460379933 @default.
- W3197722559 cites W2468552792 @default.
- W3197722559 cites W2485115851 @default.
- W3197722559 cites W2502460172 @default.
- W3197722559 cites W2510478131 @default.
- W3197722559 cites W2548368410 @default.
- W3197722559 cites W2560464966 @default.
- W3197722559 cites W2562194812 @default.
- W3197722559 cites W2597025011 @default.
- W3197722559 cites W2729476522 @default.
- W3197722559 cites W2740110852 @default.
- W3197722559 cites W2767347753 @default.
- W3197722559 cites W2773900483 @default.
- W3197722559 cites W2790087907 @default.
- W3197722559 cites W2791026221 @default.
- W3197722559 cites W2798197447 @default.
- W3197722559 cites W2858547974 @default.
- W3197722559 cites W2889283060 @default.
- W3197722559 cites W2899028077 @default.
- W3197722559 cites W2901427974 @default.
- W3197722559 cites W2910270865 @default.
- W3197722559 cites W2912632360 @default.
- W3197722559 cites W2914762252 @default.
- W3197722559 cites W2947959051 @default.
- W3197722559 cites W2950723992 @default.
- W3197722559 cites W2954723067 @default.
- W3197722559 cites W2963550415 @default.
- W3197722559 cites W2969517181 @default.
- W3197722559 cites W2979548319 @default.
- W3197722559 cites W2980777317 @default.
- W3197722559 cites W2993682907 @default.
- W3197722559 cites W2997742056 @default.
- W3197722559 cites W2998430063 @default.
- W3197722559 cites W2999645861 @default.
- W3197722559 cites W3004131911 @default.
- W3197722559 cites W3010329512 @default.
- W3197722559 cites W3033805298 @default.
- W3197722559 cites W3175549360 @default.
- W3197722559 cites W4247597617 @default.
- W3197722559 cites W4253243920 @default.
- W3197722559 doi "https://doi.org/10.3724/sp.j.1123.2021.05017" @default.
- W3197722559 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34486833" @default.
- W3197722559 hasPublicationYear "2021" @default.
- W3197722559 type Work @default.
- W3197722559 sameAs 3197722559 @default.
- W3197722559 citedByCount "3" @default.
- W3197722559 countsByYear W31977225592022 @default.
- W3197722559 countsByYear W31977225592023 @default.
- W3197722559 crossrefType "journal-article" @default.
- W3197722559 hasAuthorship W3197722559A5003547177 @default.
- W3197722559 hasAuthorship W3197722559A5020803702 @default.
- W3197722559 hasAuthorship W3197722559A5043330570 @default.
- W3197722559 hasAuthorship W3197722559A5057821650 @default.
- W3197722559 hasAuthorship W3197722559A5079791518 @default.
- W3197722559 hasAuthorship W3197722559A5081091594 @default.
- W3197722559 hasBestOaLocation W31977225591 @default.
- W3197722559 hasConcept C105569014 @default.
- W3197722559 hasConcept C127413603 @default.
- W3197722559 hasConcept C150394285 @default.
- W3197722559 hasConcept C150581940 @default.