Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197752446> ?p ?o ?g. }
- W3197752446 abstract "The modelling of natural convection in porous media is receiving increased interest due to its significance in environmental and engineering problems. State-of-the-art simulations are based on the classic macroscopic Darcy–Oberbeck–Boussinesq (DOB) equations, which are widely accepted to capture the underlying physics of convection in porous media provided the Darcy number, $Da$ , is small. In this paper we analyse and extend the recent pore-resolved direct numerical simulations (DNS) of Gasow et al. ( J. Fluid Mech , vol. 891, 2020, p. A25) and show that the macroscopic diffusion, which is neglected in DOB, is of the same order (with respect to $Da$ ) as the buoyancy force and the Darcy drag. Consequently, the macroscopic diffusion must be modelled even if the value of $Da$ is small. We propose a ‘two-length-scale diffusion’ model, in which the effect of the pore scale on the momentum transport is approximated with a macroscopic diffusion term. This term is determined by both the macroscopic length scale and the pore scale. It includes a transport coefficient that solely depends on the pore-scale geometry. Simulations of our model render a more accurate Sherwood number, root mean square (r.m.s.) of the mass concentration and r.m.s. of the velocity than simulations that employ the DOB equations. In particular, we find that the Sherwood number $Sh$ increases with decreasing porosity and with increasing Schmidt number $(Sc)$ . In addition, for high values of $Ra$ and high porosities, $Sh$ scales nonlinearly. These trends agree with the DNS, but are not captured in the DOB simulations." @default.
- W3197752446 created "2021-09-13" @default.
- W3197752446 creator A5009763322 @default.
- W3197752446 creator A5050244093 @default.
- W3197752446 creator A5058591349 @default.
- W3197752446 creator A5075453637 @default.
- W3197752446 date "2021-09-06" @default.
- W3197752446 modified "2023-10-11" @default.
- W3197752446 title "A macroscopic two-length-scale model for natural convection in porous media driven by a species-concentration gradient" @default.
- W3197752446 cites W1507602995 @default.
- W3197752446 cites W1641969825 @default.
- W3197752446 cites W1968550459 @default.
- W3197752446 cites W1970730881 @default.
- W3197752446 cites W1972184457 @default.
- W3197752446 cites W1977269945 @default.
- W3197752446 cites W1979758465 @default.
- W3197752446 cites W1982532187 @default.
- W3197752446 cites W1985762111 @default.
- W3197752446 cites W1991557019 @default.
- W3197752446 cites W1993930401 @default.
- W3197752446 cites W1996732629 @default.
- W3197752446 cites W1997127260 @default.
- W3197752446 cites W2001687194 @default.
- W3197752446 cites W2002171295 @default.
- W3197752446 cites W2010945250 @default.
- W3197752446 cites W2012155464 @default.
- W3197752446 cites W2028308450 @default.
- W3197752446 cites W2031487774 @default.
- W3197752446 cites W2033935976 @default.
- W3197752446 cites W2041780885 @default.
- W3197752446 cites W2046432265 @default.
- W3197752446 cites W2048313457 @default.
- W3197752446 cites W2048327685 @default.
- W3197752446 cites W2051324188 @default.
- W3197752446 cites W2065471786 @default.
- W3197752446 cites W2075474944 @default.
- W3197752446 cites W2095872033 @default.
- W3197752446 cites W2102689158 @default.
- W3197752446 cites W2113874255 @default.
- W3197752446 cites W2114106364 @default.
- W3197752446 cites W2116465625 @default.
- W3197752446 cites W2122908222 @default.
- W3197752446 cites W2127887153 @default.
- W3197752446 cites W2130935756 @default.
- W3197752446 cites W2133490387 @default.
- W3197752446 cites W2135669166 @default.
- W3197752446 cites W2135766947 @default.
- W3197752446 cites W2136806461 @default.
- W3197752446 cites W2138361385 @default.
- W3197752446 cites W2143439894 @default.
- W3197752446 cites W2148022759 @default.
- W3197752446 cites W2159934446 @default.
- W3197752446 cites W2169233956 @default.
- W3197752446 cites W2169592548 @default.
- W3197752446 cites W2171559073 @default.
- W3197752446 cites W2244266142 @default.
- W3197752446 cites W2300689087 @default.
- W3197752446 cites W2313370484 @default.
- W3197752446 cites W2342434391 @default.
- W3197752446 cites W2419319180 @default.
- W3197752446 cites W2477107297 @default.
- W3197752446 cites W2479946758 @default.
- W3197752446 cites W2516976238 @default.
- W3197752446 cites W2614735145 @default.
- W3197752446 cites W2657269139 @default.
- W3197752446 cites W2789771072 @default.
- W3197752446 cites W2794089969 @default.
- W3197752446 cites W2800272010 @default.
- W3197752446 cites W2803396148 @default.
- W3197752446 cites W2889172768 @default.
- W3197752446 cites W2890702865 @default.
- W3197752446 cites W2899132182 @default.
- W3197752446 cites W2911372501 @default.
- W3197752446 cites W2924577817 @default.
- W3197752446 cites W2967088043 @default.
- W3197752446 cites W2984736418 @default.
- W3197752446 cites W2986715594 @default.
- W3197752446 cites W2995682149 @default.
- W3197752446 cites W3017063759 @default.
- W3197752446 cites W3026264759 @default.
- W3197752446 cites W3029552355 @default.
- W3197752446 cites W3039644151 @default.
- W3197752446 cites W3125690735 @default.
- W3197752446 cites W3128866907 @default.
- W3197752446 cites W3158675618 @default.
- W3197752446 cites W4236264885 @default.
- W3197752446 cites W4237894137 @default.
- W3197752446 cites W4241314020 @default.
- W3197752446 cites W4301498182 @default.
- W3197752446 doi "https://doi.org/10.1017/jfm.2021.691" @default.
- W3197752446 hasPublicationYear "2021" @default.
- W3197752446 type Work @default.
- W3197752446 sameAs 3197752446 @default.
- W3197752446 citedByCount "9" @default.
- W3197752446 countsByYear W31977524462022 @default.
- W3197752446 countsByYear W31977524462023 @default.
- W3197752446 crossrefType "journal-article" @default.
- W3197752446 hasAuthorship W3197752446A5009763322 @default.
- W3197752446 hasAuthorship W3197752446A5050244093 @default.
- W3197752446 hasAuthorship W3197752446A5058591349 @default.