Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197798851> ?p ?o ?g. }
- W3197798851 endingPage "104832" @default.
- W3197798851 startingPage "104832" @default.
- W3197798851 abstract "Evaluate the effect of aging using two different methods on the three-dimensional fit of zirconia abutments at the implant-abutment connection and estimate the probability of survival of anterior crowns supported by straight and 17-degree angled abutments.Two different zirconia abutment designs, straight and 17-degree angled abutments (n = 63/group), were evaluated in the current study. The abutments were randomly allocated into three experimental groups according to laboratory aging condition (134°C, 2.2 bar, 20 h): (i) control, (ii) autoclave aging, and (iii) hydrothermal reactor aging. Crystalline content was determined by X-Ray diffraction (XRD) and Raman spectroscopy, and microstructure was analyzed using field-emission gun scanning electron microscope (FEG-SEM). Implant-abutment volume misfit was determined in the straight abutments by micro-computed tomography using the silicone replica technique. For fatigue testing, abutments were torqued to the implants and connected to standardized maxillary incisor zirconia crowns. The assemblies were subjected to step-stress accelerated life testing (SSALT) in water until fracture or suspension. The use level probability Weibull curves and probability of survival for a mission of 50,000 cycles at 50, 100, 150 and 200 N were calculated and plotted. Fractured samples were analyzed using a stereomicroscope and scanning electron microscope.The crystalline spectra depicted a zirconia system primarily composed of the tetragonal phase. Laboratory aging yielded a 20%- and 37%-increase in the monoclinic content for abutments aged in autoclave and hydrothermal reactor relative to control, respectively. A fully crystalline matrix with a regular grain size was observed in the FEG-SEM for control abutments, with a considerable presence of intergranular defects. While autoclave aging triggered no significant alteration to the microstructure, defect population was reduced after hydrothermal reactor aging. Control abutments presented a significantly higher volume misfit (2.128 ± 0.54 mm3) relative to aged abutments using autoclave (1.244 ± 0.48 mm3) or hydrothermal reactor (1.441 ± 0.41 mm3). The beta (β) values indicated that failures were predominantly controlled by material strength rather than fatigue damage accumulation for all groups, except for straight control abutments. Irrespective of aging, the probability of survival of straight and angled zirconia abutments was up to 95% (95-100%) at 50 and 100 N. A 50N-increase in the load resulted in wider range of survival estimate, with straight autoclave abutments percentage significantly lower probability of survival (77%) than angled hydrothermal reactor abutments (99%). At 200N, angled hydrothermal reactor (97%) or autoclave (82%) aged abutments demonstrated the highest probability of survival, angled control (71%) and straight hydrothermal reactor (69%) abutments intermediate values, and straight autoclave (23%) and control (7%) abutments the lowest estimate. The failure mode predominantly involved abutment and/or abutment screw fracture for both straight and angled abutments.Hydrothermal aging significantly influenced volume misfit, as well as the probability of survival of zirconia abutments at higher loads for both angled and straight abutments." @default.
- W3197798851 created "2021-09-13" @default.
- W3197798851 creator A5010327085 @default.
- W3197798851 creator A5010595399 @default.
- W3197798851 creator A5013067542 @default.
- W3197798851 creator A5019835695 @default.
- W3197798851 creator A5040990657 @default.
- W3197798851 creator A5056659140 @default.
- W3197798851 creator A5061059280 @default.
- W3197798851 creator A5068864782 @default.
- W3197798851 creator A5068911071 @default.
- W3197798851 creator A5069291468 @default.
- W3197798851 creator A5074159148 @default.
- W3197798851 creator A5081054229 @default.
- W3197798851 creator A5091013828 @default.
- W3197798851 date "2021-12-01" @default.
- W3197798851 modified "2023-10-15" @default.
- W3197798851 title "Hydrothermal aging affects the three-dimensional fit and fatigue lifetime of zirconia abutments" @default.
- W3197798851 cites W1844539320 @default.
- W3197798851 cites W1960794618 @default.
- W3197798851 cites W1967220302 @default.
- W3197798851 cites W1968317965 @default.
- W3197798851 cites W1979056896 @default.
- W3197798851 cites W1980778669 @default.
- W3197798851 cites W1995367568 @default.
- W3197798851 cites W2005150100 @default.
- W3197798851 cites W2020607057 @default.
- W3197798851 cites W2028147968 @default.
- W3197798851 cites W2065141985 @default.
- W3197798851 cites W2083908531 @default.
- W3197798851 cites W2098066243 @default.
- W3197798851 cites W2107148626 @default.
- W3197798851 cites W2116279921 @default.
- W3197798851 cites W2128110896 @default.
- W3197798851 cites W2129486998 @default.
- W3197798851 cites W2130009228 @default.
- W3197798851 cites W2134690201 @default.
- W3197798851 cites W2140625128 @default.
- W3197798851 cites W2154619064 @default.
- W3197798851 cites W2167832779 @default.
- W3197798851 cites W2201702490 @default.
- W3197798851 cites W2274638892 @default.
- W3197798851 cites W2301404009 @default.
- W3197798851 cites W2308716313 @default.
- W3197798851 cites W2321205996 @default.
- W3197798851 cites W2405276278 @default.
- W3197798851 cites W2563488620 @default.
- W3197798851 cites W2606148816 @default.
- W3197798851 cites W2795319768 @default.
- W3197798851 cites W2897123181 @default.
- W3197798851 cites W2897929383 @default.
- W3197798851 cites W2905241020 @default.
- W3197798851 cites W2912063000 @default.
- W3197798851 cites W2968864669 @default.
- W3197798851 cites W2980307013 @default.
- W3197798851 cites W2988292490 @default.
- W3197798851 cites W3052586390 @default.
- W3197798851 cites W3108342603 @default.
- W3197798851 cites W3152832355 @default.
- W3197798851 cites W4250468202 @default.
- W3197798851 doi "https://doi.org/10.1016/j.jmbbm.2021.104832" @default.
- W3197798851 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34536801" @default.
- W3197798851 hasPublicationYear "2021" @default.
- W3197798851 type Work @default.
- W3197798851 sameAs 3197798851 @default.
- W3197798851 citedByCount "4" @default.
- W3197798851 countsByYear W31977988512023 @default.
- W3197798851 crossrefType "journal-article" @default.
- W3197798851 hasAuthorship W3197798851A5010327085 @default.
- W3197798851 hasAuthorship W3197798851A5010595399 @default.
- W3197798851 hasAuthorship W3197798851A5013067542 @default.
- W3197798851 hasAuthorship W3197798851A5019835695 @default.
- W3197798851 hasAuthorship W3197798851A5040990657 @default.
- W3197798851 hasAuthorship W3197798851A5056659140 @default.
- W3197798851 hasAuthorship W3197798851A5061059280 @default.
- W3197798851 hasAuthorship W3197798851A5068864782 @default.
- W3197798851 hasAuthorship W3197798851A5068911071 @default.
- W3197798851 hasAuthorship W3197798851A5069291468 @default.
- W3197798851 hasAuthorship W3197798851A5074159148 @default.
- W3197798851 hasAuthorship W3197798851A5081054229 @default.
- W3197798851 hasAuthorship W3197798851A5091013828 @default.
- W3197798851 hasConcept C123609680 @default.
- W3197798851 hasConcept C127313418 @default.
- W3197798851 hasConcept C127413603 @default.
- W3197798851 hasConcept C134132462 @default.
- W3197798851 hasConcept C156622251 @default.
- W3197798851 hasConcept C159985019 @default.
- W3197798851 hasConcept C165205528 @default.
- W3197798851 hasConcept C191897082 @default.
- W3197798851 hasConcept C192562407 @default.
- W3197798851 hasConcept C26771246 @default.
- W3197798851 hasConcept C43088074 @default.
- W3197798851 hasConcept C48777230 @default.
- W3197798851 hasConcept C66938386 @default.
- W3197798851 hasConcept C87976508 @default.
- W3197798851 hasConceptScore W3197798851C123609680 @default.
- W3197798851 hasConceptScore W3197798851C127313418 @default.
- W3197798851 hasConceptScore W3197798851C127413603 @default.