Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197803753> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3197803753 abstract "Data mining and its applications are ubiquitous for business purposes since its beginning. Data mining techniques are used by many fields for knowledge discovery as well as for strategic decisions. However, in the present era, some new and emerging areas like education systems are also using data mining successfully to discover meaningful patterns from the pool of data. The primary focus of all academic institutions is the prediction of student's academic performance. To achieve this, educational data mining (EDM) is used. All over the world, educational data mining (EDM) is gaining popularity among the researchers because of its need and importance for the society. To handle the complexity of large volume of educational institutions data, various informative technologies are used. Machine learning is used by many researchers to mine knowledge from the educational database for the improvement in students and instructor’s performance. The most challenging task in prediction models is to select the efficient technique by which satisfactorily results can be produced. A hybrid algorithm of principal component analysis (HPCA) in conjunction with four machines learning (ML) algorithms: random forest (RF), support vector machine (SVM), naive Bayes (NB) of Bayes network and C5.0 of decision tree (DT)is introduced in this paper so that there is always an improvement in the performances of classification. We evaluated our proposed model on three datasets taken from kaggle. In this paper, assessment metrics of the proposed model are classification accuracy, root mean square error (RSME), precision and recall. 10-fold cross-validation is also applied on these datasets for the evaluation of predictive performance. The proposed algorithm produced satisfactorily results of prediction which shows that HPCA is best for the optimal prediction method to get good result." @default.
- W3197803753 created "2021-09-13" @default.
- W3197803753 creator A5028936264 @default.
- W3197803753 creator A5035573955 @default.
- W3197803753 date "2021-06-23" @default.
- W3197803753 modified "2023-09-23" @default.
- W3197803753 title "DESIGN AND DEVELOPMENT OF HYBRID PRINCIPAL COMPONENT ANALYSIS (HPCA) ALGORITHM FOR ACADEMIC PERFORMANCE PREDICTION" @default.
- W3197803753 cites W2899401604 @default.
- W3197803753 cites W2944350665 @default.
- W3197803753 cites W2989425437 @default.
- W3197803753 cites W3033604406 @default.
- W3197803753 cites W3126460558 @default.
- W3197803753 cites W3157381992 @default.
- W3197803753 hasPublicationYear "2021" @default.
- W3197803753 type Work @default.
- W3197803753 sameAs 3197803753 @default.
- W3197803753 citedByCount "0" @default.
- W3197803753 crossrefType "journal-article" @default.
- W3197803753 hasAuthorship W3197803753A5028936264 @default.
- W3197803753 hasAuthorship W3197803753A5035573955 @default.
- W3197803753 hasConcept C119857082 @default.
- W3197803753 hasConcept C120567893 @default.
- W3197803753 hasConcept C12267149 @default.
- W3197803753 hasConcept C124101348 @default.
- W3197803753 hasConcept C154945302 @default.
- W3197803753 hasConcept C169258074 @default.
- W3197803753 hasConcept C2522767166 @default.
- W3197803753 hasConcept C27438332 @default.
- W3197803753 hasConcept C2777598771 @default.
- W3197803753 hasConcept C41008148 @default.
- W3197803753 hasConcept C52001869 @default.
- W3197803753 hasConcept C84525736 @default.
- W3197803753 hasConceptScore W3197803753C119857082 @default.
- W3197803753 hasConceptScore W3197803753C120567893 @default.
- W3197803753 hasConceptScore W3197803753C12267149 @default.
- W3197803753 hasConceptScore W3197803753C124101348 @default.
- W3197803753 hasConceptScore W3197803753C154945302 @default.
- W3197803753 hasConceptScore W3197803753C169258074 @default.
- W3197803753 hasConceptScore W3197803753C2522767166 @default.
- W3197803753 hasConceptScore W3197803753C27438332 @default.
- W3197803753 hasConceptScore W3197803753C2777598771 @default.
- W3197803753 hasConceptScore W3197803753C41008148 @default.
- W3197803753 hasConceptScore W3197803753C52001869 @default.
- W3197803753 hasConceptScore W3197803753C84525736 @default.
- W3197803753 hasLocation W31978037531 @default.
- W3197803753 hasOpenAccess W3197803753 @default.
- W3197803753 hasPrimaryLocation W31978037531 @default.
- W3197803753 hasRelatedWork W2373555655 @default.
- W3197803753 hasRelatedWork W2521417416 @default.
- W3197803753 hasRelatedWork W2811036052 @default.
- W3197803753 hasRelatedWork W2888881606 @default.
- W3197803753 hasRelatedWork W2890999076 @default.
- W3197803753 hasRelatedWork W2906549068 @default.
- W3197803753 hasRelatedWork W2918883041 @default.
- W3197803753 hasRelatedWork W2937264775 @default.
- W3197803753 hasRelatedWork W2946674783 @default.
- W3197803753 hasRelatedWork W2967357196 @default.
- W3197803753 hasRelatedWork W2974661002 @default.
- W3197803753 hasRelatedWork W2994214637 @default.
- W3197803753 hasRelatedWork W3004478116 @default.
- W3197803753 hasRelatedWork W3033526508 @default.
- W3197803753 hasRelatedWork W3105375277 @default.
- W3197803753 hasRelatedWork W3122282902 @default.
- W3197803753 hasRelatedWork W3134407038 @default.
- W3197803753 hasRelatedWork W3176795340 @default.
- W3197803753 hasRelatedWork W3208432742 @default.
- W3197803753 hasRelatedWork W3091642486 @default.
- W3197803753 isParatext "false" @default.
- W3197803753 isRetracted "false" @default.
- W3197803753 magId "3197803753" @default.
- W3197803753 workType "article" @default.