Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197883390> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3197883390 abstract "This paper establishes a comprehensive theory of the optimality, robustness, and cross-validation selection-consistency for the ridge regression under factor-augmented models with possibly dense idiosyncratic information. Using spectral analysis for random matrices, we show that the ridge regression is asymptotically efficient in capturing both factor and idiosyncratic information, by minimizing the limiting predictive loss among the entire class of spectral regularized estimators under large-dimensional factor models and mixed-effects hypothesis. We derive an asymptotically optimal ridge penalty in closed form, and prove that a bias-corrected k-fold cross-validation procedure can select the best ridge penalty adaptively in large samples. We extend the theory to the autoregressive models with many exogenous variables and establish a consistent cross-validation procedure using the what-we-called double ridge regression method. Our results allow for non-parametric distributions for martingale difference errors and idiosyncratic random coefficients, and adapt to both the cross-sectional and temporal dependence structures of the large-dimensional predictors. A simulation study shows the efficiency of the ridge regression estimators under dense models and its robustness against sparsity. We apply our methods to forecast the growth rate of US industrial production and S&P 500 index using the FRED-MD database. Our double ridge regression improves the autoregressive prediction and outperforms the principal component regression and the factor-adjusted LASSO regression consistently." @default.
- W3197883390 created "2021-09-13" @default.
- W3197883390 creator A5000517180 @default.
- W3197883390 date "2020-01-01" @default.
- W3197883390 modified "2023-09-23" @default.
- W3197883390 title "Factor-Adjusted Ridge Prediction Using Large-Dimensional Mixed-Effects Models" @default.
- W3197883390 cites W1520471750 @default.
- W3197883390 cites W1520752838 @default.
- W3197883390 cites W1586554030 @default.
- W3197883390 cites W1960920821 @default.
- W3197883390 cites W1968046779 @default.
- W3197883390 cites W1969097180 @default.
- W3197883390 cites W1975570699 @default.
- W3197883390 cites W1999974018 @default.
- W3197883390 cites W1999981132 @default.
- W3197883390 cites W2002605354 @default.
- W3197883390 cites W2014165366 @default.
- W3197883390 cites W2030677701 @default.
- W3197883390 cites W2038952578 @default.
- W3197883390 cites W2055651549 @default.
- W3197883390 cites W2060581589 @default.
- W3197883390 cites W2078957532 @default.
- W3197883390 cites W2079563517 @default.
- W3197883390 cites W2097714737 @default.
- W3197883390 cites W2100967164 @default.
- W3197883390 cites W2110383584 @default.
- W3197883390 cites W2111345445 @default.
- W3197883390 cites W2148541040 @default.
- W3197883390 cites W2159706540 @default.
- W3197883390 cites W2168111208 @default.
- W3197883390 cites W2257263437 @default.
- W3197883390 cites W2273181118 @default.
- W3197883390 cites W2368500460 @default.
- W3197883390 cites W2770188460 @default.
- W3197883390 cites W2787894218 @default.
- W3197883390 cites W2884552970 @default.
- W3197883390 cites W2923764619 @default.
- W3197883390 cites W2963094815 @default.
- W3197883390 cites W3005119431 @default.
- W3197883390 cites W3033746505 @default.
- W3197883390 cites W3105622673 @default.
- W3197883390 cites W3121553976 @default.
- W3197883390 cites W3123265401 @default.
- W3197883390 cites W3125057276 @default.
- W3197883390 cites W3161892906 @default.
- W3197883390 cites W4205853270 @default.
- W3197883390 cites W4234698323 @default.
- W3197883390 cites W4235256446 @default.
- W3197883390 doi "https://doi.org/10.2139/ssrn.3699669" @default.
- W3197883390 hasPublicationYear "2020" @default.
- W3197883390 type Work @default.
- W3197883390 sameAs 3197883390 @default.
- W3197883390 citedByCount "0" @default.
- W3197883390 crossrefType "journal-article" @default.
- W3197883390 hasAuthorship W3197883390A5000517180 @default.
- W3197883390 hasConcept C127313418 @default.
- W3197883390 hasConcept C149782125 @default.
- W3197883390 hasConcept C151730666 @default.
- W3197883390 hasConcept C192562407 @default.
- W3197883390 hasConcept C32277403 @default.
- W3197883390 hasConcept C33923547 @default.
- W3197883390 hasConcept C39432304 @default.
- W3197883390 hasConceptScore W3197883390C127313418 @default.
- W3197883390 hasConceptScore W3197883390C149782125 @default.
- W3197883390 hasConceptScore W3197883390C151730666 @default.
- W3197883390 hasConceptScore W3197883390C192562407 @default.
- W3197883390 hasConceptScore W3197883390C32277403 @default.
- W3197883390 hasConceptScore W3197883390C33923547 @default.
- W3197883390 hasConceptScore W3197883390C39432304 @default.
- W3197883390 hasLocation W31978833901 @default.
- W3197883390 hasOpenAccess W3197883390 @default.
- W3197883390 hasPrimaryLocation W31978833901 @default.
- W3197883390 hasRelatedWork W1980630933 @default.
- W3197883390 hasRelatedWork W1981527251 @default.
- W3197883390 hasRelatedWork W1992826496 @default.
- W3197883390 hasRelatedWork W2001410255 @default.
- W3197883390 hasRelatedWork W2041379122 @default.
- W3197883390 hasRelatedWork W2076314280 @default.
- W3197883390 hasRelatedWork W2089427725 @default.
- W3197883390 hasRelatedWork W2144344560 @default.
- W3197883390 hasRelatedWork W2899084033 @default.
- W3197883390 hasRelatedWork W2979475962 @default.
- W3197883390 isParatext "false" @default.
- W3197883390 isRetracted "false" @default.
- W3197883390 magId "3197883390" @default.
- W3197883390 workType "article" @default.