Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197919003> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3197919003 endingPage "103" @default.
- W3197919003 startingPage "99" @default.
- W3197919003 abstract "Timely detection of fatigue cracks on aircraft structural elements is the main task in damage tolerance principle approach. In this regard, much attention in aviation is paid to the methods of non-destructive testing which requires special equipment with the involvement of highly qualified personnel. Nowadays we can see that technologies that can learn to identify defects are preferred to simplify the gap process and minimize human factor errors. A self-learning technology is incorporated in the crack detection program. This makes it possible to increase the sensitivity of defects in the mode of the used technically false equipment. Unlike the detection methods of other machine learning detection systems, the system developed in this paper can also measure the cracks without the use of sophisticated sensors. However, the proposed system requires a photo-capturing device. Compared to similar visual systems, the developed system can work with very noisy images and detect cracks up to 0.3 mm. To do this, the webcam from the mid-range segment with 1920×1080 resolutions is used, that makes such technology easy to access. All modifications in the design of the camera scheme were associated with a change in the focal length, implemented by shifting the lens relative to the matrix. It allows the camera to focus on close distance less than 50 cm. For the fatigue tests compact specimens of duralumin alloy D16T with edge stress concentrator were used. The specimens were cycle tested by cantilever banding with stress ratio R=-1. Loading bogie apply force to specimens in direction normal to specimen surface. A loading value depends on the length of the loading crank and can be adjusted if needed. To measure cracks in the processed images, a visual control program on a convolutional neural network and a sliding window algorithm were used. About 4,000 images were used to train the algorithm. The sliding window algorithm analyzes small images sequentially. One by one, image regions were selected and monitored for cracks using a convolutional neural network. Areas with detected cracks are memorized by the sliding window algorithm." @default.
- W3197919003 created "2021-09-13" @default.
- W3197919003 creator A5017866389 @default.
- W3197919003 creator A5071601677 @default.
- W3197919003 creator A5080122384 @default.
- W3197919003 date "2021-08-27" @default.
- W3197919003 modified "2023-09-30" @default.
- W3197919003 title "Applications of neural networks for crack initiation and propagation monitoring in aircraft structures" @default.
- W3197919003 doi "https://doi.org/10.32620/aktt.2021.4sup2.13" @default.
- W3197919003 hasPublicationYear "2021" @default.
- W3197919003 type Work @default.
- W3197919003 sameAs 3197919003 @default.
- W3197919003 citedByCount "0" @default.
- W3197919003 crossrefType "journal-article" @default.
- W3197919003 hasAuthorship W3197919003A5017866389 @default.
- W3197919003 hasAuthorship W3197919003A5071601677 @default.
- W3197919003 hasAuthorship W3197919003A5080122384 @default.
- W3197919003 hasConcept C111919701 @default.
- W3197919003 hasConcept C120665830 @default.
- W3197919003 hasConcept C121332964 @default.
- W3197919003 hasConcept C127413603 @default.
- W3197919003 hasConcept C138496976 @default.
- W3197919003 hasConcept C15336307 @default.
- W3197919003 hasConcept C154945302 @default.
- W3197919003 hasConcept C15744967 @default.
- W3197919003 hasConcept C192209626 @default.
- W3197919003 hasConcept C21200559 @default.
- W3197919003 hasConcept C24326235 @default.
- W3197919003 hasConcept C2780407802 @default.
- W3197919003 hasConcept C41008148 @default.
- W3197919003 hasConcept C66938386 @default.
- W3197919003 hasConcept C78762247 @default.
- W3197919003 hasConcept C98045186 @default.
- W3197919003 hasConceptScore W3197919003C111919701 @default.
- W3197919003 hasConceptScore W3197919003C120665830 @default.
- W3197919003 hasConceptScore W3197919003C121332964 @default.
- W3197919003 hasConceptScore W3197919003C127413603 @default.
- W3197919003 hasConceptScore W3197919003C138496976 @default.
- W3197919003 hasConceptScore W3197919003C15336307 @default.
- W3197919003 hasConceptScore W3197919003C154945302 @default.
- W3197919003 hasConceptScore W3197919003C15744967 @default.
- W3197919003 hasConceptScore W3197919003C192209626 @default.
- W3197919003 hasConceptScore W3197919003C21200559 @default.
- W3197919003 hasConceptScore W3197919003C24326235 @default.
- W3197919003 hasConceptScore W3197919003C2780407802 @default.
- W3197919003 hasConceptScore W3197919003C41008148 @default.
- W3197919003 hasConceptScore W3197919003C66938386 @default.
- W3197919003 hasConceptScore W3197919003C78762247 @default.
- W3197919003 hasConceptScore W3197919003C98045186 @default.
- W3197919003 hasIssue "4sup2" @default.
- W3197919003 hasLocation W31979190031 @default.
- W3197919003 hasLocation W31979190032 @default.
- W3197919003 hasOpenAccess W3197919003 @default.
- W3197919003 hasPrimaryLocation W31979190031 @default.
- W3197919003 hasRelatedWork W1546415126 @default.
- W3197919003 hasRelatedWork W1564837046 @default.
- W3197919003 hasRelatedWork W1584420410 @default.
- W3197919003 hasRelatedWork W2015192756 @default.
- W3197919003 hasRelatedWork W2120815133 @default.
- W3197919003 hasRelatedWork W2328308966 @default.
- W3197919003 hasRelatedWork W3107474891 @default.
- W3197919003 hasRelatedWork W563404 @default.
- W3197919003 hasRelatedWork W7436648 @default.
- W3197919003 hasRelatedWork W2751656612 @default.
- W3197919003 isParatext "false" @default.
- W3197919003 isRetracted "false" @default.
- W3197919003 magId "3197919003" @default.
- W3197919003 workType "article" @default.