Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197937462> ?p ?o ?g. }
- W3197937462 endingPage "581" @default.
- W3197937462 startingPage "567" @default.
- W3197937462 abstract "Tumor vaccines that induce effective and sustained antitumor immunity are highly promising for cancer therapy. However, the antitumor potential of these vaccines is weakened due to the immunosuppressive characteristics of the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are the most abundant stromal cells within the TME; they play an important role in tumor growth, metastasis, immunosuppression, and drug resistance. Fibroblast activation protein-α (FAP) is overexpressed in CAFs in more than 90% of human tumor tissues. Further, FAP+CAFs are an ideal interstitial target for the immunotherapy of solid tumors. Exosomes derived from tumor cells contain many tumor antigens, which can be used as the basis of tumor vaccines that elicit strong antitumor immunity. Almost all exosome-based cancer vaccines have been designed and developed for tumor parenchymal cells. Moreover, the exosome production is very low and the purification is very difficult, limiting their clinical application as tumor vaccines. In this study, we developed FAP gene–engineered tumor cell–derived exosome-like nanovesicles (eNVs-FAP) as a tumor vaccine that can be prepared easily and in large quantities. The eNVs-FAP vaccine inhibited tumor growth by inducing strong and specific cytotoxic T lymphocyte (CTL) immune responses against tumor cells and FAP+CAFs and reprogramming the immunosuppressive TME in the colon, melanoma, lung, and breast cancer models. Moreover, eNVs-FAP vaccine–activated cellular immune responses could promote tumor ferroptosis by releasing interferon-gamma (IFN-γ) from CTLs and depleting FAP+CAFs. Thus, eNVs-FAP is a candidate tumor vaccine targeting both the tumor parenchyma and the stroma. Nanovaccines can activate immune cells and promote an antitumor immune response. In this study, we developed the fibroblast activation protein-α (FAP) gene–engineered tumor cell–derived exosome-like vesicle vaccines (eNVs-FAP). A large number of eNVs-FAP were obtained by continuously squeezing FAP gene–engineered tumor cells. eNVs-FAP showed excellent antitumor effects in a variety of tumor-bearing mouse models. The mechanistic analysis showed that eNVs-FAP promoted the maturation of dendritic cells (DCs), increased the infiltration of effector T cells into target tumor cells and FAP-positive cancer-associated fibroblasts (FAP+CAFs), and reduced the proportion of immunosuppressive cells, including M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs), in the tumor microenvironment (TME). Moreover, the clearance of FAP+CAFs helped enhance interferon-gamma-induced tumor cell ferroptosis." @default.
- W3197937462 created "2021-09-13" @default.
- W3197937462 creator A5005774249 @default.
- W3197937462 creator A5007855380 @default.
- W3197937462 creator A5010484094 @default.
- W3197937462 creator A5012310703 @default.
- W3197937462 creator A5024205563 @default.
- W3197937462 creator A5040578282 @default.
- W3197937462 creator A5046881277 @default.
- W3197937462 creator A5048328617 @default.
- W3197937462 creator A5049348085 @default.
- W3197937462 creator A5051306947 @default.
- W3197937462 creator A5071287257 @default.
- W3197937462 creator A5086664284 @default.
- W3197937462 creator A5091386509 @default.
- W3197937462 date "2021-11-01" @default.
- W3197937462 modified "2023-10-16" @default.
- W3197937462 title "Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis" @default.
- W3197937462 cites W1600015917 @default.
- W3197937462 cites W1824834086 @default.
- W3197937462 cites W1905956901 @default.
- W3197937462 cites W1972197089 @default.
- W3197937462 cites W1977381126 @default.
- W3197937462 cites W1984040705 @default.
- W3197937462 cites W2002490399 @default.
- W3197937462 cites W2002689409 @default.
- W3197937462 cites W2007794772 @default.
- W3197937462 cites W2020744745 @default.
- W3197937462 cites W2020914260 @default.
- W3197937462 cites W2033278321 @default.
- W3197937462 cites W2036144830 @default.
- W3197937462 cites W2047764904 @default.
- W3197937462 cites W2051825245 @default.
- W3197937462 cites W2060469376 @default.
- W3197937462 cites W2061135361 @default.
- W3197937462 cites W2086834665 @default.
- W3197937462 cites W2087451489 @default.
- W3197937462 cites W2088110734 @default.
- W3197937462 cites W2139325323 @default.
- W3197937462 cites W2153543784 @default.
- W3197937462 cites W2166022006 @default.
- W3197937462 cites W2297358480 @default.
- W3197937462 cites W2317611936 @default.
- W3197937462 cites W2330872912 @default.
- W3197937462 cites W2337683177 @default.
- W3197937462 cites W2400022769 @default.
- W3197937462 cites W2410079292 @default.
- W3197937462 cites W2433469106 @default.
- W3197937462 cites W2512899508 @default.
- W3197937462 cites W2529776520 @default.
- W3197937462 cites W2587925611 @default.
- W3197937462 cites W2617615447 @default.
- W3197937462 cites W2777276783 @default.
- W3197937462 cites W2786031287 @default.
- W3197937462 cites W2790543400 @default.
- W3197937462 cites W2805337903 @default.
- W3197937462 cites W2888664067 @default.
- W3197937462 cites W2902447942 @default.
- W3197937462 cites W2911671599 @default.
- W3197937462 cites W2938506185 @default.
- W3197937462 cites W2943793201 @default.
- W3197937462 cites W2949793585 @default.
- W3197937462 cites W2989707099 @default.
- W3197937462 cites W3009534706 @default.
- W3197937462 cites W3020890805 @default.
- W3197937462 doi "https://doi.org/10.1016/j.actbio.2021.09.003" @default.
- W3197937462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34506976" @default.
- W3197937462 hasPublicationYear "2021" @default.
- W3197937462 type Work @default.
- W3197937462 sameAs 3197937462 @default.
- W3197937462 citedByCount "65" @default.
- W3197937462 countsByYear W31979374622021 @default.
- W3197937462 countsByYear W31979374622022 @default.
- W3197937462 countsByYear W31979374622023 @default.
- W3197937462 crossrefType "journal-article" @default.
- W3197937462 hasAuthorship W3197937462A5005774249 @default.
- W3197937462 hasAuthorship W3197937462A5007855380 @default.
- W3197937462 hasAuthorship W3197937462A5010484094 @default.
- W3197937462 hasAuthorship W3197937462A5012310703 @default.
- W3197937462 hasAuthorship W3197937462A5024205563 @default.
- W3197937462 hasAuthorship W3197937462A5040578282 @default.
- W3197937462 hasAuthorship W3197937462A5046881277 @default.
- W3197937462 hasAuthorship W3197937462A5048328617 @default.
- W3197937462 hasAuthorship W3197937462A5049348085 @default.
- W3197937462 hasAuthorship W3197937462A5051306947 @default.
- W3197937462 hasAuthorship W3197937462A5071287257 @default.
- W3197937462 hasAuthorship W3197937462A5086664284 @default.
- W3197937462 hasAuthorship W3197937462A5091386509 @default.
- W3197937462 hasConcept C104317684 @default.
- W3197937462 hasConcept C111798993 @default.
- W3197937462 hasConcept C121608353 @default.
- W3197937462 hasConcept C145059251 @default.
- W3197937462 hasConcept C147969180 @default.
- W3197937462 hasConcept C154317977 @default.
- W3197937462 hasConcept C167672396 @default.
- W3197937462 hasConcept C16930146 @default.
- W3197937462 hasConcept C202751555 @default.
- W3197937462 hasConcept C203014093 @default.