Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197938908> ?p ?o ?g. }
- W3197938908 endingPage "104569" @default.
- W3197938908 startingPage "104569" @default.
- W3197938908 abstract "Type 2 diabetes mellitus (T2DM) and hypertension (HTN), both non-communicable diseases, are leading causes of death globally, with more imbalances in lower middle-income countries. Furthermore, poor treatment and management are known to lead to intensified healthcare utilization and increased medical care costs and impose a significant societal burden, in these countries, including Indonesia. Predicting future clinical outcomes can determine the line of treatment and value of healthcare costs, while ensuring effective patient care. In this paper, we present the prediction of length of stay (LoS) and mortality among hospitalized patients at a tertiary referral hospital in Tasikmalaya, Indonesia, between 2016 and 2019. We also aimed to determine how socio-demographic characteristics, and T2DM- or HTN-related comorbidities affect inpatient LoS and mortality.We analyzed insurance claims data of 4376 patients with T2DM or HTN hospitalized in the referral hospital. We used four prediction models based on machine-learning algorithms for LoS prediction, in relation to disease severity, physician-in-charge, room type, co-morbidities, and types of procedures performed. We used five classifiers based on multilayer perceptron (MLP) to predict inpatient mortality and compared them according to training time, testing time, and Area under Receiver Operative Curve (AUROC). Classifier accuracy measures, which included positive predictive value (PPV), negative predictive value (NPV), F-Measure, and recall, were used as performance evaluation methods.A Random forest best predicted inpatient LoS (R2, 0.70; root mean square error [RMSE], 1.96; mean absolute error [MAE], 0.935), and the gradient boosting regression model also performed similarly (R2, 0.69; RMSE, 1.96; MAE, 0.935). For inpatient mortality, best results were observed using MLP with back propagation (AUROC 0.899; 69.33 and 98.61 for PPV and NPV, respectively). The other classifiers, stochastic gradient descent with regression loss function, Huber, and random forest models all showed an average performance.Linear regression model best predicted LoS and mortality was best predicted using MLP. Patients with primary diseases such as T2DM or HTN may have comorbidities that can prolong inpatient LoS. Physicians play an important role in disseminating health related information. These predictions could assist in the development of health policies and strategies that reduce disease burden in resource-limited settings." @default.
- W3197938908 created "2021-09-13" @default.
- W3197938908 creator A5002607686 @default.
- W3197938908 creator A5009917356 @default.
- W3197938908 creator A5020790770 @default.
- W3197938908 creator A5023396800 @default.
- W3197938908 creator A5039984206 @default.
- W3197938908 creator A5046942837 @default.
- W3197938908 creator A5049204252 @default.
- W3197938908 creator A5063768001 @default.
- W3197938908 creator A5068447063 @default.
- W3197938908 date "2021-10-01" @default.
- W3197938908 modified "2023-10-06" @default.
- W3197938908 title "Predicting length of stay and mortality among hospitalized patients with type 2 diabetes mellitus and hypertension" @default.
- W3197938908 cites W1524493166 @default.
- W3197938908 cites W1980269834 @default.
- W3197938908 cites W1994936064 @default.
- W3197938908 cites W2026223482 @default.
- W3197938908 cites W2035398107 @default.
- W3197938908 cites W2041154843 @default.
- W3197938908 cites W2042358916 @default.
- W3197938908 cites W2045425332 @default.
- W3197938908 cites W2060359202 @default.
- W3197938908 cites W2061132009 @default.
- W3197938908 cites W2069822337 @default.
- W3197938908 cites W2097980954 @default.
- W3197938908 cites W2105751485 @default.
- W3197938908 cites W2114837442 @default.
- W3197938908 cites W2121800587 @default.
- W3197938908 cites W2138078247 @default.
- W3197938908 cites W2146930679 @default.
- W3197938908 cites W2152249754 @default.
- W3197938908 cites W2154634442 @default.
- W3197938908 cites W2159124734 @default.
- W3197938908 cites W2160402758 @default.
- W3197938908 cites W2318187771 @default.
- W3197938908 cites W2319839537 @default.
- W3197938908 cites W2334899541 @default.
- W3197938908 cites W2438767253 @default.
- W3197938908 cites W2460300647 @default.
- W3197938908 cites W2499427487 @default.
- W3197938908 cites W2511577975 @default.
- W3197938908 cites W2575182134 @default.
- W3197938908 cites W2645109077 @default.
- W3197938908 cites W2705689684 @default.
- W3197938908 cites W2768533039 @default.
- W3197938908 cites W2806031239 @default.
- W3197938908 cites W2907857818 @default.
- W3197938908 cites W2917954099 @default.
- W3197938908 cites W3006900930 @default.
- W3197938908 cites W4230518743 @default.
- W3197938908 doi "https://doi.org/10.1016/j.ijmedinf.2021.104569" @default.
- W3197938908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34525441" @default.
- W3197938908 hasPublicationYear "2021" @default.
- W3197938908 type Work @default.
- W3197938908 sameAs 3197938908 @default.
- W3197938908 citedByCount "5" @default.
- W3197938908 countsByYear W31979389082022 @default.
- W3197938908 countsByYear W31979389082023 @default.
- W3197938908 crossrefType "journal-article" @default.
- W3197938908 hasAuthorship W3197938908A5002607686 @default.
- W3197938908 hasAuthorship W3197938908A5009917356 @default.
- W3197938908 hasAuthorship W3197938908A5020790770 @default.
- W3197938908 hasAuthorship W3197938908A5023396800 @default.
- W3197938908 hasAuthorship W3197938908A5039984206 @default.
- W3197938908 hasAuthorship W3197938908A5046942837 @default.
- W3197938908 hasAuthorship W3197938908A5049204252 @default.
- W3197938908 hasAuthorship W3197938908A5063768001 @default.
- W3197938908 hasAuthorship W3197938908A5068447063 @default.
- W3197938908 hasConcept C105795698 @default.
- W3197938908 hasConcept C126322002 @default.
- W3197938908 hasConcept C134018914 @default.
- W3197938908 hasConcept C139945424 @default.
- W3197938908 hasConcept C150217764 @default.
- W3197938908 hasConcept C160735492 @default.
- W3197938908 hasConcept C162324750 @default.
- W3197938908 hasConcept C194828623 @default.
- W3197938908 hasConcept C2776135927 @default.
- W3197938908 hasConcept C2910068830 @default.
- W3197938908 hasConcept C33923547 @default.
- W3197938908 hasConcept C50522688 @default.
- W3197938908 hasConcept C512399662 @default.
- W3197938908 hasConcept C555293320 @default.
- W3197938908 hasConcept C58471807 @default.
- W3197938908 hasConcept C71924100 @default.
- W3197938908 hasConceptScore W3197938908C105795698 @default.
- W3197938908 hasConceptScore W3197938908C126322002 @default.
- W3197938908 hasConceptScore W3197938908C134018914 @default.
- W3197938908 hasConceptScore W3197938908C139945424 @default.
- W3197938908 hasConceptScore W3197938908C150217764 @default.
- W3197938908 hasConceptScore W3197938908C160735492 @default.
- W3197938908 hasConceptScore W3197938908C162324750 @default.
- W3197938908 hasConceptScore W3197938908C194828623 @default.
- W3197938908 hasConceptScore W3197938908C2776135927 @default.
- W3197938908 hasConceptScore W3197938908C2910068830 @default.
- W3197938908 hasConceptScore W3197938908C33923547 @default.
- W3197938908 hasConceptScore W3197938908C50522688 @default.
- W3197938908 hasConceptScore W3197938908C512399662 @default.