Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197950712> ?p ?o ?g. }
- W3197950712 endingPage "84" @default.
- W3197950712 startingPage "65" @default.
- W3197950712 abstract "Abstract I evaluated conversion efficiency of hot‐carrier solar cells (HC‐SCs) of the original type and two improved types: an HC‐SC with intraband transition (HC‐SC+intra) and an intermediate‐band‐assisted HC‐SC (IB‐HC‐SC) that utilize sub‐bandgap photons. For this purpose, three realistic points of great importance were involved in the newly constructed detailed‐balance model: Shockley–Read–Hall (SRH) recombination of photogenerated carriers, characteristics of the energy‐selective contacts (ESCs), and solar spectrum variation. I have revealed that the HC‐SC+intra and IB‐HC‐SC can potentially yield annual electricity production comparable to those of triple‐junction and quad‐junction solar cells (3J‐ and 4J‐SCs) when sub‐bandgap photons are almost perfectly absorbed. The ESCs consisting of wide‐bandgap layers extract the photogenerated carriers more rapidly owing to their larger conductance and consequently yield higher conversion efficiency than the ESCs using resonant tunneling diodes composed of quantum dots and quantum wells. This, in turn, enables the use of an absorber with a short SRH recombination time of the carriers. In other words, the efficiency is less sensitive to SRH recombination than those of the 3J‐ and 4J‐SCs. In particular, for the IB‐HC‐SC, the requisite of the SRH recombination time is 1 ns, and that of the thermalization time is 0.1 ns; the latter is an order of magnitude shorter than the previous requisite. These HC‐SCs are more robust against the solar spectrum variation because they are free from the current‐matching problem unlike the 3J‐ and 4J‐SCs, which also contributes to the large annual electricity production." @default.
- W3197950712 created "2021-09-13" @default.
- W3197950712 creator A5006606182 @default.
- W3197950712 date "2021-08-30" @default.
- W3197950712 modified "2023-10-16" @default.
- W3197950712 title "Hot‐carrier solar cells and improved types using wide‐bandgap energy‐selective contacts" @default.
- W3197950712 cites W147029428 @default.
- W3197950712 cites W1803174986 @default.
- W3197950712 cites W1827832566 @default.
- W3197950712 cites W1875476714 @default.
- W3197950712 cites W1886768125 @default.
- W3197950712 cites W1905416121 @default.
- W3197950712 cites W1965211145 @default.
- W3197950712 cites W1977840580 @default.
- W3197950712 cites W1980044311 @default.
- W3197950712 cites W1981328983 @default.
- W3197950712 cites W1986804289 @default.
- W3197950712 cites W1987346293 @default.
- W3197950712 cites W1988931875 @default.
- W3197950712 cites W1989837232 @default.
- W3197950712 cites W1991529996 @default.
- W3197950712 cites W1993617336 @default.
- W3197950712 cites W1998747871 @default.
- W3197950712 cites W2006592554 @default.
- W3197950712 cites W2006727042 @default.
- W3197950712 cites W2011056012 @default.
- W3197950712 cites W2015728682 @default.
- W3197950712 cites W2016885878 @default.
- W3197950712 cites W2019054390 @default.
- W3197950712 cites W2022848737 @default.
- W3197950712 cites W2026033481 @default.
- W3197950712 cites W2029637177 @default.
- W3197950712 cites W2038493278 @default.
- W3197950712 cites W2045037421 @default.
- W3197950712 cites W2060310194 @default.
- W3197950712 cites W2068623965 @default.
- W3197950712 cites W2071848947 @default.
- W3197950712 cites W2074751819 @default.
- W3197950712 cites W2086205955 @default.
- W3197950712 cites W2095848881 @default.
- W3197950712 cites W2099200340 @default.
- W3197950712 cites W2100881200 @default.
- W3197950712 cites W2119803253 @default.
- W3197950712 cites W2161662289 @default.
- W3197950712 cites W2166193118 @default.
- W3197950712 cites W2241210075 @default.
- W3197950712 cites W2258642040 @default.
- W3197950712 cites W2283746353 @default.
- W3197950712 cites W2330109100 @default.
- W3197950712 cites W2330109988 @default.
- W3197950712 cites W2491645843 @default.
- W3197950712 cites W2571018855 @default.
- W3197950712 cites W2587357357 @default.
- W3197950712 cites W2599879069 @default.
- W3197950712 cites W2600967139 @default.
- W3197950712 cites W2605482028 @default.
- W3197950712 cites W2623901937 @default.
- W3197950712 cites W2768005077 @default.
- W3197950712 cites W2784537591 @default.
- W3197950712 cites W2790656765 @default.
- W3197950712 cites W2804027709 @default.
- W3197950712 cites W2883247438 @default.
- W3197950712 cites W2885615024 @default.
- W3197950712 cites W2900725311 @default.
- W3197950712 cites W2902817149 @default.
- W3197950712 cites W2902933450 @default.
- W3197950712 cites W2907896544 @default.
- W3197950712 cites W2915739058 @default.
- W3197950712 cites W2919693830 @default.
- W3197950712 cites W2929387694 @default.
- W3197950712 cites W2929595970 @default.
- W3197950712 cites W2948020026 @default.
- W3197950712 cites W2953956715 @default.
- W3197950712 cites W2963802411 @default.
- W3197950712 cites W2968433544 @default.
- W3197950712 cites W2983968750 @default.
- W3197950712 cites W2995416062 @default.
- W3197950712 cites W3010772142 @default.
- W3197950712 cites W3011090132 @default.
- W3197950712 cites W3016886306 @default.
- W3197950712 cites W3025385385 @default.
- W3197950712 cites W3032007326 @default.
- W3197950712 cites W3080896323 @default.
- W3197950712 cites W3093708340 @default.
- W3197950712 cites W3097561775 @default.
- W3197950712 cites W3103164016 @default.
- W3197950712 cites W3109201334 @default.
- W3197950712 cites W3124690832 @default.
- W3197950712 cites W831807616 @default.
- W3197950712 doi "https://doi.org/10.1002/pip.3460" @default.
- W3197950712 hasPublicationYear "2021" @default.
- W3197950712 type Work @default.
- W3197950712 sameAs 3197950712 @default.
- W3197950712 citedByCount "6" @default.
- W3197950712 countsByYear W31979507122022 @default.
- W3197950712 countsByYear W31979507122023 @default.
- W3197950712 crossrefType "journal-article" @default.
- W3197950712 hasAuthorship W3197950712A5006606182 @default.