Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198103875> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3198103875 abstract "Quantum computers hold the promise to solve some hard problems that are intractable for even the most powerful current supercomputers. One of the most famous examples is Shor's algorithm for factorizing large numbers, which has exponential speedup compared to its best classical counterparts. However, running such an algorithm will require to build a large-scale quantum computer consisting of thousands or even millions of qubits that include quantum error correction (QEC) and fault-tolerant (FT) mechanisms. Quantum computing is already a reality with the so-called Noisy Intermediate-Scale Quantum (NISQ) processors, some of them available in the cloud. Noisy refers to the imperfect control over the qubits and intermediate-scale to the relatively low number of quits (from fifty to a few hundred). Although current and near-term quantum devices will not have enough qubits for implementing large and fully corrected quantum computations, the use of small quantum error correction codes may extend the computation lifetime of NISQ devices. In this context and as a first step, it is important to test and demonstrate the fault-tolerance of these QEC codes. In this thesis, we explore the fault-tolerance of two small quantum correction codes that are good candidates to be applied to NISQ processors, the [[4,2,2]] code and the [[7,1,3]] Steane code. To this purpose, by following the FT criterion prosed by Daniel Gottesman in 2016, we tested both codes using two simulators, the stabilizer formalism simulator that includes quite simple error models and a full density matrix simulator called quantumsim, which includes more realistic noise. The simulations are performed under reasonable noise parameter values. For the [[4,2,2]] code, 235 circuits are tested based on the two simulators. The results show that in the stabilizer formalism simulation, the FT criterion is satised for all circuits, while not fully satisfied in the full density matrix simulation. For the [[7,1,3]] Steane code, we use a parallel-flag error correction implementation which is tested using the full density matrix simulator. Our results show that without applying any QEC cycle, for all circuits (84 circuits for 1 logical qubit simulation and 452 circuits for 2 logical qubits simulation), the error rate of the encoded circuits is lower than the unencoded ones. Adding a quantum error correction (QEC) cycle will in general increase the error rate of the computation." @default.
- W3198103875 created "2021-09-13" @default.
- W3198103875 creator A5072302620 @default.
- W3198103875 date "2019-01-01" @default.
- W3198103875 modified "2023-09-27" @default.
- W3198103875 title "Fault-Tolerance Testing on Small Quantum Error-Correcting Codes" @default.
- W3198103875 hasPublicationYear "2019" @default.
- W3198103875 type Work @default.
- W3198103875 sameAs 3198103875 @default.
- W3198103875 citedByCount "0" @default.
- W3198103875 crossrefType "journal-article" @default.
- W3198103875 hasAuthorship W3198103875A5072302620 @default.
- W3198103875 hasConcept C103088060 @default.
- W3198103875 hasConcept C113775141 @default.
- W3198103875 hasConcept C11413529 @default.
- W3198103875 hasConcept C121332964 @default.
- W3198103875 hasConcept C137019171 @default.
- W3198103875 hasConcept C173608175 @default.
- W3198103875 hasConcept C203087015 @default.
- W3198103875 hasConcept C41008148 @default.
- W3198103875 hasConcept C51003876 @default.
- W3198103875 hasConcept C58053490 @default.
- W3198103875 hasConcept C62520636 @default.
- W3198103875 hasConcept C80444323 @default.
- W3198103875 hasConcept C84114770 @default.
- W3198103875 hasConceptScore W3198103875C103088060 @default.
- W3198103875 hasConceptScore W3198103875C113775141 @default.
- W3198103875 hasConceptScore W3198103875C11413529 @default.
- W3198103875 hasConceptScore W3198103875C121332964 @default.
- W3198103875 hasConceptScore W3198103875C137019171 @default.
- W3198103875 hasConceptScore W3198103875C173608175 @default.
- W3198103875 hasConceptScore W3198103875C203087015 @default.
- W3198103875 hasConceptScore W3198103875C41008148 @default.
- W3198103875 hasConceptScore W3198103875C51003876 @default.
- W3198103875 hasConceptScore W3198103875C58053490 @default.
- W3198103875 hasConceptScore W3198103875C62520636 @default.
- W3198103875 hasConceptScore W3198103875C80444323 @default.
- W3198103875 hasConceptScore W3198103875C84114770 @default.
- W3198103875 hasLocation W31981038751 @default.
- W3198103875 hasOpenAccess W3198103875 @default.
- W3198103875 hasPrimaryLocation W31981038751 @default.
- W3198103875 hasRelatedWork W1500004221 @default.
- W3198103875 hasRelatedWork W1646020168 @default.
- W3198103875 hasRelatedWork W1675244148 @default.
- W3198103875 hasRelatedWork W1989594983 @default.
- W3198103875 hasRelatedWork W2005655024 @default.
- W3198103875 hasRelatedWork W2017663749 @default.
- W3198103875 hasRelatedWork W2049546811 @default.
- W3198103875 hasRelatedWork W2052169397 @default.
- W3198103875 hasRelatedWork W2055598707 @default.
- W3198103875 hasRelatedWork W2119292153 @default.
- W3198103875 hasRelatedWork W2278633073 @default.
- W3198103875 hasRelatedWork W2591783339 @default.
- W3198103875 hasRelatedWork W2917936957 @default.
- W3198103875 hasRelatedWork W2983818199 @default.
- W3198103875 hasRelatedWork W2996546932 @default.
- W3198103875 hasRelatedWork W3013823205 @default.
- W3198103875 hasRelatedWork W3111171121 @default.
- W3198103875 hasRelatedWork W3114925137 @default.
- W3198103875 hasRelatedWork W3134467527 @default.
- W3198103875 hasRelatedWork W3163495057 @default.
- W3198103875 isParatext "false" @default.
- W3198103875 isRetracted "false" @default.
- W3198103875 magId "3198103875" @default.
- W3198103875 workType "article" @default.