Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198122265> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3198122265 endingPage "393" @default.
- W3198122265 startingPage "376" @default.
- W3198122265 abstract "This paper studies the compilation of judicial case summarisation in China. Judicial case summaries are made through the abridgement, generalisation, and summarisation of court verdicts. It is a time-consuming, inefficient manual process done by legal professionals. The automatic generation of such summaries could save much time of legal professionals. Court verdicts are generally lengthy, exceeding the maximum word limit for inputs into pre-trained models. Through the observation and analysis of existing data sets, this paper conducts further treatment of these datasets. The dataset of one court verdict is split into five via phrase extraction to obtain the extracts of five key components of a court verdict and the corresponding manual summaries. In this way, we convert one text summarisation problem into five text compression and integration problems for sentences of five different categories. We adopt the GPT-2 pre-trained model, which excels in text generation, to conduct text compression and integration. From that, key points for compression of various parts of the verdict are obtained, which are eventually put together to obtain the summary of the court verdict. This paper divides datasets using extractive algorithms and compresses and integrates them using abstractive algorithms. Our experiments show that our approach proposed by this paper performs well." @default.
- W3198122265 created "2021-09-13" @default.
- W3198122265 creator A5030600444 @default.
- W3198122265 creator A5067238717 @default.
- W3198122265 creator A5085352453 @default.
- W3198122265 date "2021-01-01" @default.
- W3198122265 modified "2023-09-23" @default.
- W3198122265 title "Chinese Judicial Summarising Based on Short Sentence Extraction and GPT-2" @default.
- W3198122265 cites W2083451366 @default.
- W3198122265 cites W2133182690 @default.
- W3198122265 cites W2467173223 @default.
- W3198122265 cites W2500111820 @default.
- W3198122265 cites W2606974598 @default.
- W3198122265 cites W2724394450 @default.
- W3198122265 cites W2730405534 @default.
- W3198122265 cites W2741375528 @default.
- W3198122265 cites W2886204470 @default.
- W3198122265 cites W2911329389 @default.
- W3198122265 cites W2938146102 @default.
- W3198122265 cites W2952138241 @default.
- W3198122265 cites W2962739339 @default.
- W3198122265 cites W2994033896 @default.
- W3198122265 doi "https://doi.org/10.1007/978-3-030-82147-0_31" @default.
- W3198122265 hasPublicationYear "2021" @default.
- W3198122265 type Work @default.
- W3198122265 sameAs 3198122265 @default.
- W3198122265 citedByCount "4" @default.
- W3198122265 countsByYear W31981222652022 @default.
- W3198122265 countsByYear W31981222652023 @default.
- W3198122265 crossrefType "book-chapter" @default.
- W3198122265 hasAuthorship W3198122265A5030600444 @default.
- W3198122265 hasAuthorship W3198122265A5067238717 @default.
- W3198122265 hasAuthorship W3198122265A5085352453 @default.
- W3198122265 hasConcept C138885662 @default.
- W3198122265 hasConcept C154945302 @default.
- W3198122265 hasConcept C17744445 @default.
- W3198122265 hasConcept C199539241 @default.
- W3198122265 hasConcept C204321447 @default.
- W3198122265 hasConcept C23123220 @default.
- W3198122265 hasConcept C26517878 @default.
- W3198122265 hasConcept C2776213154 @default.
- W3198122265 hasConcept C2776224158 @default.
- W3198122265 hasConcept C2777530160 @default.
- W3198122265 hasConcept C38652104 @default.
- W3198122265 hasConcept C41008148 @default.
- W3198122265 hasConcept C41895202 @default.
- W3198122265 hasConcept C90805587 @default.
- W3198122265 hasConceptScore W3198122265C138885662 @default.
- W3198122265 hasConceptScore W3198122265C154945302 @default.
- W3198122265 hasConceptScore W3198122265C17744445 @default.
- W3198122265 hasConceptScore W3198122265C199539241 @default.
- W3198122265 hasConceptScore W3198122265C204321447 @default.
- W3198122265 hasConceptScore W3198122265C23123220 @default.
- W3198122265 hasConceptScore W3198122265C26517878 @default.
- W3198122265 hasConceptScore W3198122265C2776213154 @default.
- W3198122265 hasConceptScore W3198122265C2776224158 @default.
- W3198122265 hasConceptScore W3198122265C2777530160 @default.
- W3198122265 hasConceptScore W3198122265C38652104 @default.
- W3198122265 hasConceptScore W3198122265C41008148 @default.
- W3198122265 hasConceptScore W3198122265C41895202 @default.
- W3198122265 hasConceptScore W3198122265C90805587 @default.
- W3198122265 hasLocation W31981222651 @default.
- W3198122265 hasOpenAccess W3198122265 @default.
- W3198122265 hasPrimaryLocation W31981222651 @default.
- W3198122265 hasRelatedWork W159132833 @default.
- W3198122265 hasRelatedWork W1597901428 @default.
- W3198122265 hasRelatedWork W1794016765 @default.
- W3198122265 hasRelatedWork W1963756296 @default.
- W3198122265 hasRelatedWork W2019025599 @default.
- W3198122265 hasRelatedWork W2086064646 @default.
- W3198122265 hasRelatedWork W2115634880 @default.
- W3198122265 hasRelatedWork W2125145484 @default.
- W3198122265 hasRelatedWork W2142990792 @default.
- W3198122265 hasRelatedWork W2889818188 @default.
- W3198122265 isParatext "false" @default.
- W3198122265 isRetracted "false" @default.
- W3198122265 magId "3198122265" @default.
- W3198122265 workType "book-chapter" @default.