Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198156748> ?p ?o ?g. }
- W3198156748 endingPage "374" @default.
- W3198156748 startingPage "361" @default.
- W3198156748 abstract "Nanofluids are extensively applied in various heat transfer mediums for improving their heat transfer characteristics and hence their performance. Specific heat capacity of nanofluids, as one of the thermophysical properties, performs principal role in heat transfer of thermal mediums utilizing nanofluids. In this regard, different studies have been carried out to investigate the influential factors on nanofluids specific heat. Moreover, several regression models based on correlations or artificial intelligence have been developed for forecasting this property of nanofluids. In the current review paper, influential parameters on the specific heat capacity of nanofluids are introduced. Afterwards, the proposed models for their forecasting and modeling are proposed. According to the reviewed works, concentration and properties of solid structures in addition to temperature affect specific heat capacity to large extent and must be considered as inputs for the models. Moreover, by using other effective factors, the accuracy and comprehensive of the models can be modified. Finally, some suggestions are offered for the upcoming works in the relevant topics." @default.
- W3198156748 created "2021-09-13" @default.
- W3198156748 creator A5025441266 @default.
- W3198156748 creator A5031926077 @default.
- W3198156748 creator A5035759479 @default.
- W3198156748 creator A5061982305 @default.
- W3198156748 creator A5082146260 @default.
- W3198156748 date "2022-01-01" @default.
- W3198156748 modified "2023-10-16" @default.
- W3198156748 title "Utilization of Machine Learning Methods in Modeling Specific Heat Capacity of Nanofluids" @default.
- W3198156748 cites W1795761821 @default.
- W3198156748 cites W1984246213 @default.
- W3198156748 cites W2016860103 @default.
- W3198156748 cites W2021359069 @default.
- W3198156748 cites W2032781465 @default.
- W3198156748 cites W2048926722 @default.
- W3198156748 cites W2124844605 @default.
- W3198156748 cites W2125160018 @default.
- W3198156748 cites W2140849749 @default.
- W3198156748 cites W2151627821 @default.
- W3198156748 cites W2191023467 @default.
- W3198156748 cites W2345879993 @default.
- W3198156748 cites W2462216100 @default.
- W3198156748 cites W2491984883 @default.
- W3198156748 cites W2492645955 @default.
- W3198156748 cites W2577344187 @default.
- W3198156748 cites W2601472392 @default.
- W3198156748 cites W2617588301 @default.
- W3198156748 cites W2618899140 @default.
- W3198156748 cites W2734343471 @default.
- W3198156748 cites W2741031840 @default.
- W3198156748 cites W2751046327 @default.
- W3198156748 cites W2754583597 @default.
- W3198156748 cites W2767430758 @default.
- W3198156748 cites W2770731167 @default.
- W3198156748 cites W2777338348 @default.
- W3198156748 cites W2789349871 @default.
- W3198156748 cites W2807570829 @default.
- W3198156748 cites W2808829409 @default.
- W3198156748 cites W2883857649 @default.
- W3198156748 cites W2884794831 @default.
- W3198156748 cites W2894010126 @default.
- W3198156748 cites W2896785214 @default.
- W3198156748 cites W2897556884 @default.
- W3198156748 cites W2909793142 @default.
- W3198156748 cites W2912075618 @default.
- W3198156748 cites W2914206112 @default.
- W3198156748 cites W2917624183 @default.
- W3198156748 cites W2922494806 @default.
- W3198156748 cites W2947183082 @default.
- W3198156748 cites W2955881471 @default.
- W3198156748 cites W2970261355 @default.
- W3198156748 cites W2974980961 @default.
- W3198156748 cites W2985491024 @default.
- W3198156748 cites W2998753605 @default.
- W3198156748 cites W3001664648 @default.
- W3198156748 cites W3011679641 @default.
- W3198156748 cites W3021125684 @default.
- W3198156748 cites W3034357903 @default.
- W3198156748 cites W3035320458 @default.
- W3198156748 cites W3080659495 @default.
- W3198156748 cites W3099887456 @default.
- W3198156748 cites W3109916648 @default.
- W3198156748 cites W3124005513 @default.
- W3198156748 cites W3127366598 @default.
- W3198156748 cites W3127410302 @default.
- W3198156748 cites W3131286836 @default.
- W3198156748 cites W3158380550 @default.
- W3198156748 cites W4231588140 @default.
- W3198156748 doi "https://doi.org/10.32604/cmc.2022.019048" @default.
- W3198156748 hasPublicationYear "2022" @default.
- W3198156748 type Work @default.
- W3198156748 sameAs 3198156748 @default.
- W3198156748 citedByCount "6" @default.
- W3198156748 countsByYear W31981567482021 @default.
- W3198156748 countsByYear W31981567482022 @default.
- W3198156748 countsByYear W31981567482023 @default.
- W3198156748 crossrefType "journal-article" @default.
- W3198156748 hasAuthorship W3198156748A5025441266 @default.
- W3198156748 hasAuthorship W3198156748A5031926077 @default.
- W3198156748 hasAuthorship W3198156748A5035759479 @default.
- W3198156748 hasAuthorship W3198156748A5061982305 @default.
- W3198156748 hasAuthorship W3198156748A5082146260 @default.
- W3198156748 hasBestOaLocation W31981567481 @default.
- W3198156748 hasConcept C121332964 @default.
- W3198156748 hasConcept C192562407 @default.
- W3198156748 hasConcept C21946209 @default.
- W3198156748 hasConcept C41008148 @default.
- W3198156748 hasConcept C50517652 @default.
- W3198156748 hasConcept C60205243 @default.
- W3198156748 hasConcept C97355855 @default.
- W3198156748 hasConceptScore W3198156748C121332964 @default.
- W3198156748 hasConceptScore W3198156748C192562407 @default.
- W3198156748 hasConceptScore W3198156748C21946209 @default.
- W3198156748 hasConceptScore W3198156748C41008148 @default.
- W3198156748 hasConceptScore W3198156748C50517652 @default.
- W3198156748 hasConceptScore W3198156748C60205243 @default.
- W3198156748 hasConceptScore W3198156748C97355855 @default.