Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198178302> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3198178302 abstract "PreviousNext No AccessFirst International Meeting for Applied Geoscience & Energy Expanded AbstractsTarget-oriented time-lapse elastic full-waveform inversion assisted by deep learning with prior informationAuthors: Yuanyuan LiAndrey BakulinPhilippe NivletRobert SmithTariq AlkhalifahYuanyuan LiKing Abdullah University of Science and Technology (KAUST)Search for more papers by this author, Andrey BakulinEXPEC ARC, Saudi AramcoSearch for more papers by this author, Philippe NivletEXPEC ARC, Saudi AramcoSearch for more papers by this author, Robert SmithEXPEC ARC, Saudi AramcoSearch for more papers by this author, and Tariq AlkhalifahKing Abdullah University of Science and Technology (KAUST)Search for more papers by this authorhttps://doi.org/10.1190/segam2021-3581711.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractTime-lapse (TL) monitoring of the elastic property changes in the reservoir of interest is important for optimizing the reservoir interpretation and development plan. Given that elastic full-waveform inversion (EFWI) provides quantitative estimations of the elastic properties (Vp and Vs), its application to time-lapse elastic data is of considerable interest. For practical applications in reservoir monitoring, we need EFWI to provide high-resolution reservoir information at a reasonable cost. Thus, we develop an elastic redatuming technique to provide the required virtual elastic data for a target-oriented inversion, thus improving the computational efficiency by focusing our full-band inversion on the target zone. To improve the inversion resolution, we combine the well information and seismic data in the proposed time-lapse inversion approach using a regularized objective function. To derive the required prior model, we train a deep neural network (DNN) to learn the connection between the seismic estimation and the facies interpreted from well logs. We then apply the trained network to the target inversion domain to predict a prior model. Given the prior model, we perform another time-lapse inversion. We fit the simulated data difference for the virtual survey to the redatumed one from the surface recording and fit the model changes to the predicted prior model. The numerical results demonstrate that the proposed method enables the recovery of the time-lapse changes effectively in the target zone by incorporating the learned model changes from well logs.Keywords: elastic, time-lapse, full-waveform inversion, machine learning, datumingPermalink: https://doi.org/10.1190/segam2021-3581711.1FiguresReferencesRelatedDetails First International Meeting for Applied Geoscience & Energy Expanded AbstractsISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2021 Pages: 3561 publication data© 2021 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished: 01 Sep 2021 CITATION INFORMATION Yuanyuan Li, Andrey Bakulin, Philippe Nivlet, Robert Smith, and Tariq Alkhalifah, (2021), Target-oriented time-lapse elastic full-waveform inversion assisted by deep learning with prior information, SEG Technical Program Expanded Abstracts : 3490-3494. https://doi.org/10.1190/segam2021-3581711.1 Plain-Language Summary Keywordselastictime-lapsefull-waveform inversionmachine learningdatumingPDF DownloadLoading ..." @default.
- W3198178302 created "2021-09-13" @default.
- W3198178302 creator A5015145045 @default.
- W3198178302 creator A5027349257 @default.
- W3198178302 creator A5032021877 @default.
- W3198178302 creator A5067998463 @default.
- W3198178302 creator A5070726740 @default.
- W3198178302 date "2021-09-01" @default.
- W3198178302 modified "2023-09-27" @default.
- W3198178302 title "Target-oriented time-lapse elastic full-waveform inversion assisted by deep learning with prior information" @default.
- W3198178302 cites W1432448011 @default.
- W3198178302 cites W2009552164 @default.
- W3198178302 cites W2011952715 @default.
- W3198178302 cites W2037469421 @default.
- W3198178302 cites W2042874555 @default.
- W3198178302 cites W2054912027 @default.
- W3198178302 cites W2107933979 @default.
- W3198178302 cites W2126737898 @default.
- W3198178302 cites W2148143831 @default.
- W3198178302 cites W2149022715 @default.
- W3198178302 cites W2604069636 @default.
- W3198178302 cites W2791776189 @default.
- W3198178302 cites W2890316692 @default.
- W3198178302 cites W2903556998 @default.
- W3198178302 cites W2919115771 @default.
- W3198178302 cites W2953182346 @default.
- W3198178302 cites W2995613012 @default.
- W3198178302 cites W3048524139 @default.
- W3198178302 cites W3089386571 @default.
- W3198178302 cites W3089884333 @default.
- W3198178302 cites W3122977429 @default.
- W3198178302 cites W3193509129 @default.
- W3198178302 cites W3204255749 @default.
- W3198178302 doi "https://doi.org/10.1190/segam2021-3581711.1" @default.
- W3198178302 hasPublicationYear "2021" @default.
- W3198178302 type Work @default.
- W3198178302 sameAs 3198178302 @default.
- W3198178302 citedByCount "1" @default.
- W3198178302 countsByYear W31981783022022 @default.
- W3198178302 crossrefType "proceedings-article" @default.
- W3198178302 hasAuthorship W3198178302A5015145045 @default.
- W3198178302 hasAuthorship W3198178302A5027349257 @default.
- W3198178302 hasAuthorship W3198178302A5032021877 @default.
- W3198178302 hasAuthorship W3198178302A5067998463 @default.
- W3198178302 hasAuthorship W3198178302A5070726740 @default.
- W3198178302 hasConcept C11413529 @default.
- W3198178302 hasConcept C127313418 @default.
- W3198178302 hasConcept C154945302 @default.
- W3198178302 hasConcept C165205528 @default.
- W3198178302 hasConcept C1893757 @default.
- W3198178302 hasConcept C197424946 @default.
- W3198178302 hasConcept C41008148 @default.
- W3198178302 hasConcept C554190296 @default.
- W3198178302 hasConcept C76155785 @default.
- W3198178302 hasConcept C77928131 @default.
- W3198178302 hasConceptScore W3198178302C11413529 @default.
- W3198178302 hasConceptScore W3198178302C127313418 @default.
- W3198178302 hasConceptScore W3198178302C154945302 @default.
- W3198178302 hasConceptScore W3198178302C165205528 @default.
- W3198178302 hasConceptScore W3198178302C1893757 @default.
- W3198178302 hasConceptScore W3198178302C197424946 @default.
- W3198178302 hasConceptScore W3198178302C41008148 @default.
- W3198178302 hasConceptScore W3198178302C554190296 @default.
- W3198178302 hasConceptScore W3198178302C76155785 @default.
- W3198178302 hasConceptScore W3198178302C77928131 @default.
- W3198178302 hasLocation W31981783021 @default.
- W3198178302 hasOpenAccess W3198178302 @default.
- W3198178302 hasPrimaryLocation W31981783021 @default.
- W3198178302 hasRelatedWork W1968702681 @default.
- W3198178302 hasRelatedWork W2022035173 @default.
- W3198178302 hasRelatedWork W2031573214 @default.
- W3198178302 hasRelatedWork W2092739438 @default.
- W3198178302 hasRelatedWork W2371527909 @default.
- W3198178302 hasRelatedWork W2772196783 @default.
- W3198178302 hasRelatedWork W2970792363 @default.
- W3198178302 hasRelatedWork W3036915269 @default.
- W3198178302 hasRelatedWork W3109652668 @default.
- W3198178302 hasRelatedWork W3113596969 @default.
- W3198178302 isParatext "false" @default.
- W3198178302 isRetracted "false" @default.
- W3198178302 magId "3198178302" @default.
- W3198178302 workType "article" @default.