Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198202938> ?p ?o ?g. }
- W3198202938 endingPage "3168" @default.
- W3198202938 startingPage "3157" @default.
- W3198202938 abstract "In this paper, we propose a new deep network architecture named deep boosting denoising net (DBDnet) for image denoising. It is a residual learning network that can generate a noise map from a noisy observation. In detail, it first generates a coarse noise map via a simple structure, and then updates the noise map gradually via a boosting function. The motivation of our DBDnet stems from the observation that the noise map recovered by any algorithm cannot ideally equal the ground-truth noise map, which typically contains noise. We call this noise NoN, <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i.e.</i> , noise of noise map. Based on this observation, we formulate the denoising as a process of reducing NoN, and the role of DBDnet is to eliminate the NoN from the coarse noise map. In particular, we analyze the process of reducing NoN theoretically, and propose an NoN eliminating module to simulate it accordingly. We evaluate the proposed DBDnet on images polluted by different levels of additive white Gaussian noise and real noise. Experiment results demonstrate that our DBDnet can attain better denoising performance compared with state-of-the-art methods on several kinds of image denoising tasks. In particular, for the Gaussian denoising and real image denoising tasks, the average improvements of the PSNR values brought by our DBDnet are about 0.25 dB and 1.01 dB, respectively. In addition, we find and verify that the deep boosting insight can be easily introduced into the state-of-the-art image denoising network, and promotes its denoising performance. Our code is publicly available at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/jiayi-ma/DBDNet</uri> ." @default.
- W3198202938 created "2021-09-13" @default.
- W3198202938 creator A5040010053 @default.
- W3198202938 creator A5053368234 @default.
- W3198202938 creator A5087165831 @default.
- W3198202938 creator A5091353529 @default.
- W3198202938 date "2022-01-01" @default.
- W3198202938 modified "2023-10-18" @default.
- W3198202938 title "DBDnet: A Deep Boosting Strategy for Image Denoising" @default.
- W3198202938 cites W1677182931 @default.
- W3198202938 cites W1906770428 @default.
- W3198202938 cites W1978749115 @default.
- W3198202938 cites W1998419211 @default.
- W3198202938 cites W2011181254 @default.
- W3198202938 cites W2033468335 @default.
- W3198202938 cites W2037642501 @default.
- W3198202938 cites W2038174831 @default.
- W3198202938 cites W2056370875 @default.
- W3198202938 cites W2090571884 @default.
- W3198202938 cites W2097713019 @default.
- W3198202938 cites W2103559027 @default.
- W3198202938 cites W2130184048 @default.
- W3198202938 cites W2153663612 @default.
- W3198202938 cites W2194775991 @default.
- W3198202938 cites W2274609130 @default.
- W3198202938 cites W2469031810 @default.
- W3198202938 cites W2536599074 @default.
- W3198202938 cites W2608488581 @default.
- W3198202938 cites W2610691757 @default.
- W3198202938 cites W2613763509 @default.
- W3198202938 cites W2613941322 @default.
- W3198202938 cites W2765333864 @default.
- W3198202938 cites W2771305881 @default.
- W3198202938 cites W2777598052 @default.
- W3198202938 cites W2784344583 @default.
- W3198202938 cites W2888395215 @default.
- W3198202938 cites W2894629025 @default.
- W3198202938 cites W2918288062 @default.
- W3198202938 cites W2946561582 @default.
- W3198202938 cites W2952323569 @default.
- W3198202938 cites W2952762034 @default.
- W3198202938 cites W2962767526 @default.
- W3198202938 cites W2963317244 @default.
- W3198202938 cites W2963446712 @default.
- W3198202938 cites W2963725279 @default.
- W3198202938 cites W2963800716 @default.
- W3198202938 cites W2964215687 @default.
- W3198202938 cites W2971061988 @default.
- W3198202938 cites W2971719842 @default.
- W3198202938 cites W2995224431 @default.
- W3198202938 cites W2999653953 @default.
- W3198202938 cites W3000255543 @default.
- W3198202938 cites W3033835243 @default.
- W3198202938 cites W3034504121 @default.
- W3198202938 cites W3041976821 @default.
- W3198202938 cites W3042698524 @default.
- W3198202938 cites W3101559505 @default.
- W3198202938 cites W3104725225 @default.
- W3198202938 cites W4242059867 @default.
- W3198202938 doi "https://doi.org/10.1109/tmm.2021.3094058" @default.
- W3198202938 hasPublicationYear "2022" @default.
- W3198202938 type Work @default.
- W3198202938 sameAs 3198202938 @default.
- W3198202938 citedByCount "7" @default.
- W3198202938 countsByYear W31982029382022 @default.
- W3198202938 countsByYear W31982029382023 @default.
- W3198202938 crossrefType "journal-article" @default.
- W3198202938 hasAuthorship W3198202938A5040010053 @default.
- W3198202938 hasAuthorship W3198202938A5053368234 @default.
- W3198202938 hasAuthorship W3198202938A5087165831 @default.
- W3198202938 hasAuthorship W3198202938A5091353529 @default.
- W3198202938 hasConcept C112633086 @default.
- W3198202938 hasConcept C115961682 @default.
- W3198202938 hasConcept C153180895 @default.
- W3198202938 hasConcept C154945302 @default.
- W3198202938 hasConcept C163294075 @default.
- W3198202938 hasConcept C169334058 @default.
- W3198202938 hasConcept C29265498 @default.
- W3198202938 hasConcept C35772409 @default.
- W3198202938 hasConcept C41008148 @default.
- W3198202938 hasConcept C4199805 @default.
- W3198202938 hasConcept C46686674 @default.
- W3198202938 hasConcept C76155785 @default.
- W3198202938 hasConcept C99498987 @default.
- W3198202938 hasConceptScore W3198202938C112633086 @default.
- W3198202938 hasConceptScore W3198202938C115961682 @default.
- W3198202938 hasConceptScore W3198202938C153180895 @default.
- W3198202938 hasConceptScore W3198202938C154945302 @default.
- W3198202938 hasConceptScore W3198202938C163294075 @default.
- W3198202938 hasConceptScore W3198202938C169334058 @default.
- W3198202938 hasConceptScore W3198202938C29265498 @default.
- W3198202938 hasConceptScore W3198202938C35772409 @default.
- W3198202938 hasConceptScore W3198202938C41008148 @default.
- W3198202938 hasConceptScore W3198202938C4199805 @default.
- W3198202938 hasConceptScore W3198202938C46686674 @default.
- W3198202938 hasConceptScore W3198202938C76155785 @default.
- W3198202938 hasConceptScore W3198202938C99498987 @default.
- W3198202938 hasFunder F4320321001 @default.