Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198220216> ?p ?o ?g. }
- W3198220216 endingPage "104826" @default.
- W3198220216 startingPage "104826" @default.
- W3198220216 abstract "Recently, the shrinkage approach has increased its popularity in theoretical and applied statistics, especially, when point estimators for high-dimensional quantities have to be constructed. A shrinkage estimator is usually obtained by shrinking the sample estimator towards a deterministic target. This allows to reduce the high volatility that is commonly present in the sample estimator by introducing a bias such that the mean-square error of the shrinkage estimator becomes smaller than the one of the corresponding sample estimator. The procedure has shown great advantages especially in the high-dimensional problems where, in general case, the sample estimators are not consistent without imposing structural assumptions on model parameters. In this paper, we review the mostly used shrinkage estimators for the mean vector, covariance and precision matrices. The application in portfolio theory is provided where the weights of optimal portfolios are usually determined as functions of the mean vector and covariance matrix. Furthermore, a test theory on the mean–variance optimality of a given portfolio based on the shrinkage approach is presented as well." @default.
- W3198220216 created "2021-09-13" @default.
- W3198220216 creator A5019806834 @default.
- W3198220216 creator A5032477641 @default.
- W3198220216 creator A5043261178 @default.
- W3198220216 date "2022-03-01" @default.
- W3198220216 modified "2023-09-26" @default.
- W3198220216 title "Recent advances in shrinkage-based high-dimensional inference" @default.
- W3198220216 cites W1965279925 @default.
- W3198220216 cites W1968278006 @default.
- W3198220216 cites W1971158534 @default.
- W3198220216 cites W1971672021 @default.
- W3198220216 cites W1973389914 @default.
- W3198220216 cites W1977003570 @default.
- W3198220216 cites W1989727964 @default.
- W3198220216 cites W1990137378 @default.
- W3198220216 cites W1990653470 @default.
- W3198220216 cites W1999409144 @default.
- W3198220216 cites W2004083515 @default.
- W3198220216 cites W2005987821 @default.
- W3198220216 cites W2006037805 @default.
- W3198220216 cites W2006048741 @default.
- W3198220216 cites W2011892826 @default.
- W3198220216 cites W2020972333 @default.
- W3198220216 cites W2021883397 @default.
- W3198220216 cites W2026282093 @default.
- W3198220216 cites W2026591784 @default.
- W3198220216 cites W2034019416 @default.
- W3198220216 cites W2039953809 @default.
- W3198220216 cites W2040373108 @default.
- W3198220216 cites W2042181797 @default.
- W3198220216 cites W2046981487 @default.
- W3198220216 cites W2054640142 @default.
- W3198220216 cites W2055701391 @default.
- W3198220216 cites W2060581589 @default.
- W3198220216 cites W2062125287 @default.
- W3198220216 cites W2063023421 @default.
- W3198220216 cites W2067444703 @default.
- W3198220216 cites W2070429079 @default.
- W3198220216 cites W2071346966 @default.
- W3198220216 cites W2073681337 @default.
- W3198220216 cites W2073837511 @default.
- W3198220216 cites W2078038009 @default.
- W3198220216 cites W2084745075 @default.
- W3198220216 cites W2088760192 @default.
- W3198220216 cites W2089178963 @default.
- W3198220216 cites W2096370806 @default.
- W3198220216 cites W2098106502 @default.
- W3198220216 cites W2098372663 @default.
- W3198220216 cites W2100375013 @default.
- W3198220216 cites W2113344754 @default.
- W3198220216 cites W2134056163 @default.
- W3198220216 cites W2155301656 @default.
- W3198220216 cites W2275161189 @default.
- W3198220216 cites W2310611010 @default.
- W3198220216 cites W2544855046 @default.
- W3198220216 cites W2900574948 @default.
- W3198220216 cites W2914925282 @default.
- W3198220216 cites W2953381952 @default.
- W3198220216 cites W2963070656 @default.
- W3198220216 cites W2964077319 @default.
- W3198220216 cites W2964248302 @default.
- W3198220216 cites W2964772095 @default.
- W3198220216 cites W2977059262 @default.
- W3198220216 cites W2982699380 @default.
- W3198220216 cites W3013441793 @default.
- W3198220216 cites W3024688460 @default.
- W3198220216 cites W3081185116 @default.
- W3198220216 cites W3098429621 @default.
- W3198220216 cites W3103715703 @default.
- W3198220216 cites W3103785116 @default.
- W3198220216 cites W3104309687 @default.
- W3198220216 cites W3121451334 @default.
- W3198220216 cites W3121682558 @default.
- W3198220216 cites W3123766390 @default.
- W3198220216 cites W4237225570 @default.
- W3198220216 doi "https://doi.org/10.1016/j.jmva.2021.104826" @default.
- W3198220216 hasPublicationYear "2022" @default.
- W3198220216 type Work @default.
- W3198220216 sameAs 3198220216 @default.
- W3198220216 citedByCount "7" @default.
- W3198220216 countsByYear W31982202162022 @default.
- W3198220216 countsByYear W31982202162023 @default.
- W3198220216 crossrefType "journal-article" @default.
- W3198220216 hasAuthorship W3198220216A5019806834 @default.
- W3198220216 hasAuthorship W3198220216A5032477641 @default.
- W3198220216 hasAuthorship W3198220216A5043261178 @default.
- W3198220216 hasBestOaLocation W31982202161 @default.
- W3198220216 hasConcept C102592046 @default.
- W3198220216 hasConcept C105795698 @default.
- W3198220216 hasConcept C139945424 @default.
- W3198220216 hasConcept C149782125 @default.
- W3198220216 hasConcept C149823167 @default.
- W3198220216 hasConcept C165646398 @default.
- W3198220216 hasConcept C178650346 @default.
- W3198220216 hasConcept C180145272 @default.
- W3198220216 hasConcept C180877172 @default.
- W3198220216 hasConcept C185142706 @default.