Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198248383> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3198248383 endingPage "843" @default.
- W3198248383 startingPage "830" @default.
- W3198248383 abstract "Abstract There has not been any research that provides an evaluation of the linguistic features extracted from the matn (text) of a Hadith. Moreover, none of the fairly large corpora are publicly available as a benchmark corpus for Hadith authenticity, and there is a need to build a ‘gold standard’ corpus for good practices in Hadith authentication. We write a scraper in Python programming language and collect a corpus of 3,651 authentic prophetic traditions and 3,593 fake ones. We process the corpora with morphological segmentation and perform extensive experimental studies using a variety of machine learning algorithms, mainly through automatic machine learning, to distinguish between these two categories. With a feature set including words, morphological segments, characters, top N words, top N segments, function words, and several vocabulary richness features, we analyze the results in terms of both prediction and interpretability to explain which features are more characteristic of each class. Many experiments have produced good results and the highest accuracy (i.e. 78.28%) is achieved using word n-grams as features using the Multinomial Naive Bayes classifier. Our extensive experimental studies conclude that, at least for Digital Humanities, feature engineering may still be desirable due to the high interpretability of the features. The corpus and software (scripts) will be made publicly available to other researchers in an effort to promote progress and replicability." @default.
- W3198248383 created "2021-09-13" @default.
- W3198248383 creator A5065358832 @default.
- W3198248383 creator A5077138944 @default.
- W3198248383 date "2021-11-13" @default.
- W3198248383 modified "2023-09-27" @default.
- W3198248383 title "Linguistic features evaluation for hadith authenticity through automatic machine learning" @default.
- W3198248383 cites W1558982577 @default.
- W3198248383 cites W1970948046 @default.
- W3198248383 cites W2004849090 @default.
- W3198248383 cites W2029315691 @default.
- W3198248383 cites W2054151502 @default.
- W3198248383 cites W2060524910 @default.
- W3198248383 cites W2100235759 @default.
- W3198248383 cites W2170349856 @default.
- W3198248383 cites W2250104175 @default.
- W3198248383 cites W2517045473 @default.
- W3198248383 cites W2584724359 @default.
- W3198248383 cites W2794720257 @default.
- W3198248383 cites W2840955633 @default.
- W3198248383 cites W28412257 @default.
- W3198248383 cites W2891486768 @default.
- W3198248383 cites W2896375675 @default.
- W3198248383 cites W2900850410 @default.
- W3198248383 cites W2955219525 @default.
- W3198248383 cites W2999918333 @default.
- W3198248383 cites W3014540851 @default.
- W3198248383 cites W3160185768 @default.
- W3198248383 cites W4232929341 @default.
- W3198248383 doi "https://doi.org/10.1093/llc/fqab092" @default.
- W3198248383 hasPublicationYear "2021" @default.
- W3198248383 type Work @default.
- W3198248383 sameAs 3198248383 @default.
- W3198248383 citedByCount "1" @default.
- W3198248383 countsByYear W31982483832022 @default.
- W3198248383 crossrefType "journal-article" @default.
- W3198248383 hasAuthorship W3198248383A5065358832 @default.
- W3198248383 hasAuthorship W3198248383A5077138944 @default.
- W3198248383 hasBestOaLocation W31982483831 @default.
- W3198248383 hasConcept C119857082 @default.
- W3198248383 hasConcept C12267149 @default.
- W3198248383 hasConcept C138885662 @default.
- W3198248383 hasConcept C154945302 @default.
- W3198248383 hasConcept C199360897 @default.
- W3198248383 hasConcept C204321447 @default.
- W3198248383 hasConcept C2776401178 @default.
- W3198248383 hasConcept C2781067378 @default.
- W3198248383 hasConcept C41008148 @default.
- W3198248383 hasConcept C41895202 @default.
- W3198248383 hasConcept C519991488 @default.
- W3198248383 hasConcept C52001869 @default.
- W3198248383 hasConcept C61423126 @default.
- W3198248383 hasConcept C95623464 @default.
- W3198248383 hasConceptScore W3198248383C119857082 @default.
- W3198248383 hasConceptScore W3198248383C12267149 @default.
- W3198248383 hasConceptScore W3198248383C138885662 @default.
- W3198248383 hasConceptScore W3198248383C154945302 @default.
- W3198248383 hasConceptScore W3198248383C199360897 @default.
- W3198248383 hasConceptScore W3198248383C204321447 @default.
- W3198248383 hasConceptScore W3198248383C2776401178 @default.
- W3198248383 hasConceptScore W3198248383C2781067378 @default.
- W3198248383 hasConceptScore W3198248383C41008148 @default.
- W3198248383 hasConceptScore W3198248383C41895202 @default.
- W3198248383 hasConceptScore W3198248383C519991488 @default.
- W3198248383 hasConceptScore W3198248383C52001869 @default.
- W3198248383 hasConceptScore W3198248383C61423126 @default.
- W3198248383 hasConceptScore W3198248383C95623464 @default.
- W3198248383 hasIssue "3" @default.
- W3198248383 hasLocation W31982483831 @default.
- W3198248383 hasOpenAccess W3198248383 @default.
- W3198248383 hasPrimaryLocation W31982483831 @default.
- W3198248383 hasRelatedWork W2296703985 @default.
- W3198248383 hasRelatedWork W2529681551 @default.
- W3198248383 hasRelatedWork W3006943036 @default.
- W3198248383 hasRelatedWork W3012234327 @default.
- W3198248383 hasRelatedWork W3107474891 @default.
- W3198248383 hasRelatedWork W3208044380 @default.
- W3198248383 hasRelatedWork W4205364923 @default.
- W3198248383 hasRelatedWork W4206534706 @default.
- W3198248383 hasRelatedWork W4229079080 @default.
- W3198248383 hasRelatedWork W4362605344 @default.
- W3198248383 hasVolume "37" @default.
- W3198248383 isParatext "false" @default.
- W3198248383 isRetracted "false" @default.
- W3198248383 magId "3198248383" @default.
- W3198248383 workType "article" @default.