Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198250660> ?p ?o ?g. }
- W3198250660 abstract "Falls represent a major burden on elderly individuals and society as a whole. Technologies that are able to detect individuals at risk of fall before occurrence could help reduce this burden by targeting those individuals for rehabilitation to reduce risk of falls. Wearable technologies especially, which can continuously monitor aspects of gait, balance, vital signs, and other aspects of health known to be related to falls, may be useful and are in need of study. A systematic review was conducted in accordance with the Preferred Reporting Items for Systematics Reviews and Meta-Analysis (PRISMA) 2009 guidelines to identify articles related to the use of wearable sensors to predict fall risk. Fifty four studies were analyzed. The majority of studies (98.0%) utilized inertial measurement units (IMUs) located at the lower back (58.0%), sternum (28.0%), and shins (28.0%). Most assessments were conducted in a structured setting (67.3%) instead of with free-living data. Fall risk was calculated based on retrospective falls history (48.9%), prospective falls reporting (36.2%), or clinical scales (19.1%). Measures of the duration spent walking and standing during free-living monitoring, linear measures such as gait speed and step length, and nonlinear measures such as entropy correlate with fall risk, and machine learning methods can distinguish between falls. However, because many studies generating machine learning models did not list the exact factors being considered, it is difficult to compare these models directly. Few studies to date have utilized results to give feedback about fall risk to the patient or to supply treatment or lifestyle suggestions to prevent fall, though these are considered important by end users. Wearable technology demonstrates considerable promise in detecting subtle changes in biomarkers of gait and balance related to an increase in fall risk. However, more large-scale studies measuring increasing fall risk before first fall are needed, and exact biomarkers and machine learning methods used need to be shared to compare results and pursue the most promising fall risk measurements. There is a great need for devices measuring fall risk also to supply patients with information about their fall risk and strategies and treatments for prevention." @default.
- W3198250660 created "2021-09-13" @default.
- W3198250660 creator A5023368562 @default.
- W3198250660 creator A5090001279 @default.
- W3198250660 date "2021-08-24" @default.
- W3198250660 modified "2023-10-14" @default.
- W3198250660 title "Predicting Fall Risk Through Automatic Wearable Monitoring" @default.
- W3198250660 cites W1080966997 @default.
- W3198250660 cites W1495590421 @default.
- W3198250660 cites W1550534467 @default.
- W3198250660 cites W1904110412 @default.
- W3198250660 cites W1921466742 @default.
- W3198250660 cites W1967075293 @default.
- W3198250660 cites W1970040938 @default.
- W3198250660 cites W1985745673 @default.
- W3198250660 cites W1989765216 @default.
- W3198250660 cites W1990922338 @default.
- W3198250660 cites W1998685378 @default.
- W3198250660 cites W2000268346 @default.
- W3198250660 cites W2001159719 @default.
- W3198250660 cites W2015469044 @default.
- W3198250660 cites W2016762450 @default.
- W3198250660 cites W2029358771 @default.
- W3198250660 cites W2029858709 @default.
- W3198250660 cites W2030574544 @default.
- W3198250660 cites W2042805584 @default.
- W3198250660 cites W2057105744 @default.
- W3198250660 cites W2060975364 @default.
- W3198250660 cites W2078767922 @default.
- W3198250660 cites W2080836485 @default.
- W3198250660 cites W2086023031 @default.
- W3198250660 cites W2088462717 @default.
- W3198250660 cites W2098482077 @default.
- W3198250660 cites W2098798128 @default.
- W3198250660 cites W2101076802 @default.
- W3198250660 cites W2108772542 @default.
- W3198250660 cites W2124048261 @default.
- W3198250660 cites W2126664632 @default.
- W3198250660 cites W2134857072 @default.
- W3198250660 cites W2140943894 @default.
- W3198250660 cites W2141514472 @default.
- W3198250660 cites W2144954419 @default.
- W3198250660 cites W2148317675 @default.
- W3198250660 cites W2149376145 @default.
- W3198250660 cites W2149745130 @default.
- W3198250660 cites W2155587084 @default.
- W3198250660 cites W2156809737 @default.
- W3198250660 cites W2171691840 @default.
- W3198250660 cites W2171846896 @default.
- W3198250660 cites W2264849830 @default.
- W3198250660 cites W2294269162 @default.
- W3198250660 cites W2313536508 @default.
- W3198250660 cites W2322968233 @default.
- W3198250660 cites W2335125833 @default.
- W3198250660 cites W2336226252 @default.
- W3198250660 cites W2342533802 @default.
- W3198250660 cites W2417427420 @default.
- W3198250660 cites W2467677331 @default.
- W3198250660 cites W2482368507 @default.
- W3198250660 cites W2498550712 @default.
- W3198250660 cites W2529025236 @default.
- W3198250660 cites W2535073270 @default.
- W3198250660 cites W2558762441 @default.
- W3198250660 cites W2587742742 @default.
- W3198250660 cites W2593801033 @default.
- W3198250660 cites W2594743133 @default.
- W3198250660 cites W2597642773 @default.
- W3198250660 cites W2604136836 @default.
- W3198250660 cites W2605569340 @default.
- W3198250660 cites W2613338096 @default.
- W3198250660 cites W2614216732 @default.
- W3198250660 cites W2618086225 @default.
- W3198250660 cites W2621543313 @default.
- W3198250660 cites W2744982483 @default.
- W3198250660 cites W2756088315 @default.
- W3198250660 cites W2771488283 @default.
- W3198250660 cites W2784329091 @default.
- W3198250660 cites W2785975688 @default.
- W3198250660 cites W2791410117 @default.
- W3198250660 cites W2794182821 @default.
- W3198250660 cites W2794657587 @default.
- W3198250660 cites W2794977303 @default.
- W3198250660 cites W2804907753 @default.
- W3198250660 cites W2805559541 @default.
- W3198250660 cites W2807206618 @default.
- W3198250660 cites W2896991727 @default.
- W3198250660 cites W2928318647 @default.
- W3198250660 cites W2941624383 @default.
- W3198250660 cites W2942750102 @default.
- W3198250660 cites W2991792334 @default.
- W3198250660 cites W48293824 @default.
- W3198250660 doi "https://doi.org/10.36001/ijphm.2021.v12i4.2958" @default.
- W3198250660 hasPublicationYear "2021" @default.
- W3198250660 type Work @default.
- W3198250660 sameAs 3198250660 @default.
- W3198250660 citedByCount "3" @default.
- W3198250660 countsByYear W31982506602022 @default.
- W3198250660 countsByYear W31982506602023 @default.
- W3198250660 crossrefType "journal-article" @default.
- W3198250660 hasAuthorship W3198250660A5023368562 @default.