Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198259011> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3198259011 endingPage "76" @default.
- W3198259011 startingPage "67" @default.
- W3198259011 abstract "A Basic Oxygen Furnace (BOF) for steel making is a complex industrial process that is difficult to monitor due to the harsh environment, so the collected production data is very limited given the process complexity. Also, such production data has a low degree of variability. An accurate machine learning (ML) model for predicting production outcome requires both large and varied data, so utilising data from multiple BOFs will allow for more capable ML models, since both the amount and variability of data increases. Data collection setups for different BOFs are different, such that data sets are not compatible to directly join for ML training. Our approach is to let a neural network benefit from these collection differences in a joint training model.We present a neural network-based approach that simultaneously and jointly co-trains on several data sets. Our novelty is that the first network layer finds an internal representation of each individual BOF, while the other layers use this representation to concurrently learn a common BOF model. Our evaluation shows that the prediction accuracy of the common model increases compared to separate models trained on individual furnaces’ data sets. It is clear that multiple data sets can be utilised this way to increase model accuracy for better production prediction performance. For the industry, this means that the amount of available data for model training increases and thereby more capable ML models can be trained when having access to multiple data sets describing the same or similar manufacturing processes." @default.
- W3198259011 created "2021-09-13" @default.
- W3198259011 creator A5040314070 @default.
- W3198259011 creator A5060132050 @default.
- W3198259011 creator A5072051036 @default.
- W3198259011 date "2021-09-02" @default.
- W3198259011 modified "2023-10-14" @default.
- W3198259011 title "Utilising Data from Multiple Production Lines for Predictive Deep Learning Models" @default.
- W3198259011 cites W1989809604 @default.
- W3198259011 cites W1999316225 @default.
- W3198259011 cites W2046676255 @default.
- W3198259011 cites W2047383254 @default.
- W3198259011 cites W2124095141 @default.
- W3198259011 cites W2398655723 @default.
- W3198259011 cites W2894703390 @default.
- W3198259011 cites W2969856879 @default.
- W3198259011 cites W3030915226 @default.
- W3198259011 cites W4255421341 @default.
- W3198259011 doi "https://doi.org/10.1007/978-3-030-86261-9_7" @default.
- W3198259011 hasPublicationYear "2021" @default.
- W3198259011 type Work @default.
- W3198259011 sameAs 3198259011 @default.
- W3198259011 citedByCount "0" @default.
- W3198259011 crossrefType "book-chapter" @default.
- W3198259011 hasAuthorship W3198259011A5040314070 @default.
- W3198259011 hasAuthorship W3198259011A5060132050 @default.
- W3198259011 hasAuthorship W3198259011A5072051036 @default.
- W3198259011 hasConcept C105795698 @default.
- W3198259011 hasConcept C111919701 @default.
- W3198259011 hasConcept C119857082 @default.
- W3198259011 hasConcept C124101348 @default.
- W3198259011 hasConcept C133462117 @default.
- W3198259011 hasConcept C138885662 @default.
- W3198259011 hasConcept C139719470 @default.
- W3198259011 hasConcept C154945302 @default.
- W3198259011 hasConcept C162324750 @default.
- W3198259011 hasConcept C17744445 @default.
- W3198259011 hasConcept C199539241 @default.
- W3198259011 hasConcept C27206212 @default.
- W3198259011 hasConcept C2776359362 @default.
- W3198259011 hasConcept C2778348673 @default.
- W3198259011 hasConcept C2778738651 @default.
- W3198259011 hasConcept C33923547 @default.
- W3198259011 hasConcept C41008148 @default.
- W3198259011 hasConcept C50644808 @default.
- W3198259011 hasConcept C94625758 @default.
- W3198259011 hasConcept C98045186 @default.
- W3198259011 hasConceptScore W3198259011C105795698 @default.
- W3198259011 hasConceptScore W3198259011C111919701 @default.
- W3198259011 hasConceptScore W3198259011C119857082 @default.
- W3198259011 hasConceptScore W3198259011C124101348 @default.
- W3198259011 hasConceptScore W3198259011C133462117 @default.
- W3198259011 hasConceptScore W3198259011C138885662 @default.
- W3198259011 hasConceptScore W3198259011C139719470 @default.
- W3198259011 hasConceptScore W3198259011C154945302 @default.
- W3198259011 hasConceptScore W3198259011C162324750 @default.
- W3198259011 hasConceptScore W3198259011C17744445 @default.
- W3198259011 hasConceptScore W3198259011C199539241 @default.
- W3198259011 hasConceptScore W3198259011C27206212 @default.
- W3198259011 hasConceptScore W3198259011C2776359362 @default.
- W3198259011 hasConceptScore W3198259011C2778348673 @default.
- W3198259011 hasConceptScore W3198259011C2778738651 @default.
- W3198259011 hasConceptScore W3198259011C33923547 @default.
- W3198259011 hasConceptScore W3198259011C41008148 @default.
- W3198259011 hasConceptScore W3198259011C50644808 @default.
- W3198259011 hasConceptScore W3198259011C94625758 @default.
- W3198259011 hasConceptScore W3198259011C98045186 @default.
- W3198259011 hasLocation W31982590111 @default.
- W3198259011 hasOpenAccess W3198259011 @default.
- W3198259011 hasPrimaryLocation W31982590111 @default.
- W3198259011 hasRelatedWork W10047719 @default.
- W3198259011 hasRelatedWork W11853729 @default.
- W3198259011 hasRelatedWork W12251780 @default.
- W3198259011 hasRelatedWork W12492200 @default.
- W3198259011 hasRelatedWork W13478224 @default.
- W3198259011 hasRelatedWork W1678066 @default.
- W3198259011 hasRelatedWork W482721 @default.
- W3198259011 hasRelatedWork W7432053 @default.
- W3198259011 hasRelatedWork W8021486 @default.
- W3198259011 hasRelatedWork W8779344 @default.
- W3198259011 isParatext "false" @default.
- W3198259011 isRetracted "false" @default.
- W3198259011 magId "3198259011" @default.
- W3198259011 workType "book-chapter" @default.