Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198382404> ?p ?o ?g. }
- W3198382404 endingPage "100606" @default.
- W3198382404 startingPage "100606" @default.
- W3198382404 abstract "Wind speed forecasting is primary to the dispatching and controllability of the power grid. This paper presents an optimization technique to estimate the optimal size of wind power plants required to fulfill the varying load demand of different districts in the state of Madhya Pradesh, India. The districts were selected based on the wind Capacity Utilization Factor (CUF) and land availability. This article proposes construction of small wind power plants in each district in order to satisfy local energy needs and, if necessary, serve the neighboring districts, thus reducing the dependence on the grid. The losses caused during transmission and distribution are substantially reduced. This article highlights the issue of estimating the size of wind power plants as an objective problem of optimization. The estimate of the energy plant size is considered a multi-objective optimising issue, and three scenarios are chosen as objectives. The first case is to reduce the monthly difference between energy demand and production in every area. In the second case, the cost of each unit generated is minimised. The third case involves reducing the power supply from one district to the other's losses in transmission and distribution. This multi-objective problem is solved via the genetic algorithm. The aim is to minimise the RMS value of demand inaccuracy by considering the cost of power generated, which was reduced at least to INR 3.60. The simulation of the optimization approach suggested indicates that the algorithm's plant size closely follows the targets." @default.
- W3198382404 created "2021-09-13" @default.
- W3198382404 creator A5028004658 @default.
- W3198382404 creator A5038532273 @default.
- W3198382404 creator A5039653513 @default.
- W3198382404 creator A5070351521 @default.
- W3198382404 creator A5070424292 @default.
- W3198382404 date "2021-12-01" @default.
- W3198382404 modified "2023-10-12" @default.
- W3198382404 title "Optimization of wind power plant sizing and placement by the application of multi-objective genetic algorithm (GA) in Madhya Pradesh, India" @default.
- W3198382404 cites W1630099098 @default.
- W3198382404 cites W1860650788 @default.
- W3198382404 cites W1968535060 @default.
- W3198382404 cites W1971755897 @default.
- W3198382404 cites W1975774546 @default.
- W3198382404 cites W1979606535 @default.
- W3198382404 cites W1988659752 @default.
- W3198382404 cites W2049729003 @default.
- W3198382404 cites W2065593596 @default.
- W3198382404 cites W2072464631 @default.
- W3198382404 cites W2106334424 @default.
- W3198382404 cites W2126105956 @default.
- W3198382404 cites W2405706183 @default.
- W3198382404 cites W2412802618 @default.
- W3198382404 cites W2500423546 @default.
- W3198382404 cites W2511588990 @default.
- W3198382404 cites W2521826931 @default.
- W3198382404 cites W2546390476 @default.
- W3198382404 cites W2742365644 @default.
- W3198382404 cites W2746541274 @default.
- W3198382404 cites W2790805214 @default.
- W3198382404 cites W2794445911 @default.
- W3198382404 cites W2900921197 @default.
- W3198382404 cites W2921628694 @default.
- W3198382404 cites W2934542942 @default.
- W3198382404 cites W2940581235 @default.
- W3198382404 cites W2942947862 @default.
- W3198382404 cites W2981013440 @default.
- W3198382404 cites W2993600562 @default.
- W3198382404 cites W2996604185 @default.
- W3198382404 cites W2997926747 @default.
- W3198382404 cites W2999896566 @default.
- W3198382404 cites W3016577303 @default.
- W3198382404 cites W3022064004 @default.
- W3198382404 cites W3041402433 @default.
- W3198382404 cites W3092521051 @default.
- W3198382404 doi "https://doi.org/10.1016/j.suscom.2021.100606" @default.
- W3198382404 hasPublicationYear "2021" @default.
- W3198382404 type Work @default.
- W3198382404 sameAs 3198382404 @default.
- W3198382404 citedByCount "6" @default.
- W3198382404 countsByYear W31983824042022 @default.
- W3198382404 countsByYear W31983824042023 @default.
- W3198382404 crossrefType "journal-article" @default.
- W3198382404 hasAuthorship W3198382404A5028004658 @default.
- W3198382404 hasAuthorship W3198382404A5038532273 @default.
- W3198382404 hasAuthorship W3198382404A5039653513 @default.
- W3198382404 hasAuthorship W3198382404A5070351521 @default.
- W3198382404 hasAuthorship W3198382404A5070424292 @default.
- W3198382404 hasConcept C119599485 @default.
- W3198382404 hasConcept C121332964 @default.
- W3198382404 hasConcept C126255220 @default.
- W3198382404 hasConcept C127413603 @default.
- W3198382404 hasConcept C142362112 @default.
- W3198382404 hasConcept C153349607 @default.
- W3198382404 hasConcept C163258240 @default.
- W3198382404 hasConcept C187691185 @default.
- W3198382404 hasConcept C200601418 @default.
- W3198382404 hasConcept C2524010 @default.
- W3198382404 hasConcept C2777767291 @default.
- W3198382404 hasConcept C28826006 @default.
- W3198382404 hasConcept C33923547 @default.
- W3198382404 hasConcept C41008148 @default.
- W3198382404 hasConcept C4311470 @default.
- W3198382404 hasConcept C48209547 @default.
- W3198382404 hasConcept C62520636 @default.
- W3198382404 hasConcept C78600449 @default.
- W3198382404 hasConcept C8880873 @default.
- W3198382404 hasConceptScore W3198382404C119599485 @default.
- W3198382404 hasConceptScore W3198382404C121332964 @default.
- W3198382404 hasConceptScore W3198382404C126255220 @default.
- W3198382404 hasConceptScore W3198382404C127413603 @default.
- W3198382404 hasConceptScore W3198382404C142362112 @default.
- W3198382404 hasConceptScore W3198382404C153349607 @default.
- W3198382404 hasConceptScore W3198382404C163258240 @default.
- W3198382404 hasConceptScore W3198382404C187691185 @default.
- W3198382404 hasConceptScore W3198382404C200601418 @default.
- W3198382404 hasConceptScore W3198382404C2524010 @default.
- W3198382404 hasConceptScore W3198382404C2777767291 @default.
- W3198382404 hasConceptScore W3198382404C28826006 @default.
- W3198382404 hasConceptScore W3198382404C33923547 @default.
- W3198382404 hasConceptScore W3198382404C41008148 @default.
- W3198382404 hasConceptScore W3198382404C4311470 @default.
- W3198382404 hasConceptScore W3198382404C48209547 @default.
- W3198382404 hasConceptScore W3198382404C62520636 @default.
- W3198382404 hasConceptScore W3198382404C78600449 @default.
- W3198382404 hasConceptScore W3198382404C8880873 @default.
- W3198382404 hasLocation W31983824041 @default.