Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198397239> ?p ?o ?g. }
- W3198397239 abstract "Damage to reinforced concrete (RC) can be hazardous to structures and threaten users' health and work efficiency; it is an indicator of the deterioration level of a facility. Developing automatic detection methods for facility damage has always been a goal that competent authorities of facility management strive to achieve, and such methods can provide engineers with references when evaluating facility damage and maintenance. This study introduced a hybrid machine learning (HML) that combined cluster analyses and a support vector machine (SVM) to create SVM-based clustering. The method was proposed to detect four types of RC damage: rebar exposure, spalling, efflorescence, and cracking. First, grouping was implemented according to damage features in images using cluster analysis, and the results were used as the standard for SVM classification. Second, the detection efficacy of the two types of machine learning, namely, SVM-based clustering and SVM, were compared. The functions of the suggested HML were evaluated with the six indicators based on image data with human annotations. In the classification experiment of three models, HML was superior to the single supervised machine learning. SVM-based clustering had the highest detection efficacy for cracks (accuracy = 99.3%), followed by the detection of the ternary damage of rebar exposure, spalling, and efflorescence (accuracy = 94.9%). HML can quickly extract damage features from digital images and classify multiple types of RC damage in a certain time. The proposed method is effective for facilitating the damage evaluation of facilities and is useful for facility competent authorities and user safety." @default.
- W3198397239 created "2021-09-13" @default.
- W3198397239 creator A5066528132 @default.
- W3198397239 date "2021-09-02" @default.
- W3198397239 modified "2023-10-10" @default.
- W3198397239 title "Detection of multidamage to reinforced concrete using support vector machine‐based clustering from digital images" @default.
- W3198397239 cites W1158935686 @default.
- W3198397239 cites W1601369032 @default.
- W3198397239 cites W1985676512 @default.
- W3198397239 cites W1986526928 @default.
- W3198397239 cites W1992462714 @default.
- W3198397239 cites W2000226049 @default.
- W3198397239 cites W2000779269 @default.
- W3198397239 cites W2028660383 @default.
- W3198397239 cites W2061064077 @default.
- W3198397239 cites W2063629235 @default.
- W3198397239 cites W2064864121 @default.
- W3198397239 cites W2067302180 @default.
- W3198397239 cites W2085477122 @default.
- W3198397239 cites W2093040750 @default.
- W3198397239 cites W2093357463 @default.
- W3198397239 cites W2099531274 @default.
- W3198397239 cites W2122379760 @default.
- W3198397239 cites W2126052502 @default.
- W3198397239 cites W2151103935 @default.
- W3198397239 cites W2152765586 @default.
- W3198397239 cites W2154400911 @default.
- W3198397239 cites W2154506590 @default.
- W3198397239 cites W2156909104 @default.
- W3198397239 cites W2163922914 @default.
- W3198397239 cites W2164945628 @default.
- W3198397239 cites W2222043370 @default.
- W3198397239 cites W2261304198 @default.
- W3198397239 cites W2526166515 @default.
- W3198397239 cites W2527787519 @default.
- W3198397239 cites W2549940417 @default.
- W3198397239 cites W2586750457 @default.
- W3198397239 cites W2587857969 @default.
- W3198397239 cites W2591544917 @default.
- W3198397239 cites W2598457882 @default.
- W3198397239 cites W2748510423 @default.
- W3198397239 cites W2768955070 @default.
- W3198397239 cites W2792741217 @default.
- W3198397239 cites W2792758958 @default.
- W3198397239 cites W2800346298 @default.
- W3198397239 cites W2803755786 @default.
- W3198397239 cites W2885751965 @default.
- W3198397239 cites W2889494142 @default.
- W3198397239 cites W2893488762 @default.
- W3198397239 cites W2901951431 @default.
- W3198397239 cites W2903155537 @default.
- W3198397239 cites W2905053868 @default.
- W3198397239 cites W2908753069 @default.
- W3198397239 cites W2943574864 @default.
- W3198397239 cites W2944666600 @default.
- W3198397239 cites W2946369859 @default.
- W3198397239 cites W2948461581 @default.
- W3198397239 cites W2963048282 @default.
- W3198397239 cites W2969856252 @default.
- W3198397239 cites W2970362668 @default.
- W3198397239 cites W2970811970 @default.
- W3198397239 cites W2985669209 @default.
- W3198397239 cites W3116529855 @default.
- W3198397239 cites W4251036056 @default.
- W3198397239 cites W4298302411 @default.
- W3198397239 doi "https://doi.org/10.1002/stc.2841" @default.
- W3198397239 hasPublicationYear "2021" @default.
- W3198397239 type Work @default.
- W3198397239 sameAs 3198397239 @default.
- W3198397239 citedByCount "4" @default.
- W3198397239 countsByYear W31983972392022 @default.
- W3198397239 countsByYear W31983972392023 @default.
- W3198397239 crossrefType "journal-article" @default.
- W3198397239 hasAuthorship W3198397239A5066528132 @default.
- W3198397239 hasBestOaLocation W31983972391 @default.
- W3198397239 hasConcept C119857082 @default.
- W3198397239 hasConcept C12267149 @default.
- W3198397239 hasConcept C124101348 @default.
- W3198397239 hasConcept C127413603 @default.
- W3198397239 hasConcept C153180895 @default.
- W3198397239 hasConcept C154945302 @default.
- W3198397239 hasConcept C2778664469 @default.
- W3198397239 hasConcept C41008148 @default.
- W3198397239 hasConcept C64355373 @default.
- W3198397239 hasConcept C66938386 @default.
- W3198397239 hasConcept C73555534 @default.
- W3198397239 hasConceptScore W3198397239C119857082 @default.
- W3198397239 hasConceptScore W3198397239C12267149 @default.
- W3198397239 hasConceptScore W3198397239C124101348 @default.
- W3198397239 hasConceptScore W3198397239C127413603 @default.
- W3198397239 hasConceptScore W3198397239C153180895 @default.
- W3198397239 hasConceptScore W3198397239C154945302 @default.
- W3198397239 hasConceptScore W3198397239C2778664469 @default.
- W3198397239 hasConceptScore W3198397239C41008148 @default.
- W3198397239 hasConceptScore W3198397239C64355373 @default.
- W3198397239 hasConceptScore W3198397239C66938386 @default.
- W3198397239 hasConceptScore W3198397239C73555534 @default.
- W3198397239 hasIssue "12" @default.
- W3198397239 hasLocation W31983972391 @default.
- W3198397239 hasOpenAccess W3198397239 @default.