Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198399144> ?p ?o ?g. }
- W3198399144 endingPage "1429" @default.
- W3198399144 startingPage "1418" @default.
- W3198399144 abstract "Convolutional neural networks (CNNs) are widely used in the field of medical imaging diagnosis but have the disadvantages of slow training speed and low diagnostic accuracy due to the initialization of parameters before training. In this article, a CNN optimization method based on the beetle antennae search (BAS) optimization algorithm is proposed. The method optimizes the initial parameters of the CNN through the BAS optimization algorithm. Based on this optimization approach, a novel CNN model with a pretrained BAS optimization algorithm was developed and applied to the analysis and diagnosis of medical imaging data for intracranial hemorrhage. Experimental results on 330 test images show that the proposed method has a better diagnostic performance than the traditional CNN. The proposed method achieves a diagnostic accuracy of 93.9394% and 100% recall, and the diagnosis of 66 human head computerized tomography image data only takes 0.1596 s. Moreover, the proposed method has more advantages than the three other optimization algorithms." @default.
- W3198399144 created "2021-09-13" @default.
- W3198399144 creator A5062844980 @default.
- W3198399144 creator A5065912071 @default.
- W3198399144 creator A5069917952 @default.
- W3198399144 date "2023-03-01" @default.
- W3198399144 modified "2023-10-18" @default.
- W3198399144 title "A Novel Convolutional Neural Network Model Based on Beetle Antennae Search Optimization Algorithm for Computerized Tomography Diagnosis" @default.
- W3198399144 cites W1659842140 @default.
- W3198399144 cites W1849277567 @default.
- W3198399144 cites W1904793877 @default.
- W3198399144 cites W2056398894 @default.
- W3198399144 cites W2097117768 @default.
- W3198399144 cites W2101926813 @default.
- W3198399144 cites W2112796928 @default.
- W3198399144 cites W2273476706 @default.
- W3198399144 cites W2293983223 @default.
- W3198399144 cites W2344912502 @default.
- W3198399144 cites W2397781239 @default.
- W3198399144 cites W2510648513 @default.
- W3198399144 cites W2528811420 @default.
- W3198399144 cites W2533102868 @default.
- W3198399144 cites W2554978116 @default.
- W3198399144 cites W2605564896 @default.
- W3198399144 cites W2606276573 @default.
- W3198399144 cites W2768673271 @default.
- W3198399144 cites W2768956845 @default.
- W3198399144 cites W2781854221 @default.
- W3198399144 cites W2789367970 @default.
- W3198399144 cites W2793119512 @default.
- W3198399144 cites W2794284562 @default.
- W3198399144 cites W2795983680 @default.
- W3198399144 cites W2797660040 @default.
- W3198399144 cites W2802087177 @default.
- W3198399144 cites W2884001105 @default.
- W3198399144 cites W2884702580 @default.
- W3198399144 cites W2886281300 @default.
- W3198399144 cites W2893347629 @default.
- W3198399144 cites W2898141251 @default.
- W3198399144 cites W2899635607 @default.
- W3198399144 cites W2900257566 @default.
- W3198399144 cites W2901954625 @default.
- W3198399144 cites W2904596315 @default.
- W3198399144 cites W2908300827 @default.
- W3198399144 cites W2911437338 @default.
- W3198399144 cites W2919115771 @default.
- W3198399144 cites W2919538836 @default.
- W3198399144 cites W2922255081 @default.
- W3198399144 cites W2928382658 @default.
- W3198399144 cites W2944090748 @default.
- W3198399144 cites W2944894513 @default.
- W3198399144 cites W2946350616 @default.
- W3198399144 cites W2947137917 @default.
- W3198399144 cites W2964016673 @default.
- W3198399144 cites W2977955221 @default.
- W3198399144 cites W2999211714 @default.
- W3198399144 cites W3010522809 @default.
- W3198399144 cites W3024704601 @default.
- W3198399144 cites W3034620513 @default.
- W3198399144 cites W4210580908 @default.
- W3198399144 cites W4232951231 @default.
- W3198399144 doi "https://doi.org/10.1109/tnnls.2021.3105384" @default.
- W3198399144 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34460391" @default.
- W3198399144 hasPublicationYear "2023" @default.
- W3198399144 type Work @default.
- W3198399144 sameAs 3198399144 @default.
- W3198399144 citedByCount "14" @default.
- W3198399144 countsByYear W31983991442021 @default.
- W3198399144 countsByYear W31983991442022 @default.
- W3198399144 countsByYear W31983991442023 @default.
- W3198399144 crossrefType "journal-article" @default.
- W3198399144 hasAuthorship W3198399144A5062844980 @default.
- W3198399144 hasAuthorship W3198399144A5065912071 @default.
- W3198399144 hasAuthorship W3198399144A5069917952 @default.
- W3198399144 hasConcept C11413529 @default.
- W3198399144 hasConcept C114466953 @default.
- W3198399144 hasConcept C126255220 @default.
- W3198399144 hasConcept C137836250 @default.
- W3198399144 hasConcept C153180895 @default.
- W3198399144 hasConcept C154945302 @default.
- W3198399144 hasConcept C199360897 @default.
- W3198399144 hasConcept C2987595161 @default.
- W3198399144 hasConcept C31601959 @default.
- W3198399144 hasConcept C33923547 @default.
- W3198399144 hasConcept C41008148 @default.
- W3198399144 hasConcept C81363708 @default.
- W3198399144 hasConceptScore W3198399144C11413529 @default.
- W3198399144 hasConceptScore W3198399144C114466953 @default.
- W3198399144 hasConceptScore W3198399144C126255220 @default.
- W3198399144 hasConceptScore W3198399144C137836250 @default.
- W3198399144 hasConceptScore W3198399144C153180895 @default.
- W3198399144 hasConceptScore W3198399144C154945302 @default.
- W3198399144 hasConceptScore W3198399144C199360897 @default.
- W3198399144 hasConceptScore W3198399144C2987595161 @default.
- W3198399144 hasConceptScore W3198399144C31601959 @default.
- W3198399144 hasConceptScore W3198399144C33923547 @default.
- W3198399144 hasConceptScore W3198399144C41008148 @default.
- W3198399144 hasConceptScore W3198399144C81363708 @default.