Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198435162> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3198435162 abstract "Refining an idea of Rosenmann and Rosset we show that the now widely studied classical Leavitt algebra $L_K(1,n)$ over a field $K$ is a ring of right quotients of the unital free associative algebra of rank $n$ with respect to the perfect Gabriel topology defined by powers of an ideal of codimension 1, providing a conceptual, variable-free description of $L_K(1, n)$. This result puts Leavitt (path) algebras on the frontier of important research areas in localization theory, free ideal rings and their automorphism groups, quiver algebras and graph operator algebras. As applications one obtains a short, transparent proof for the module type $(1,n), (ngeq 2)$ of Leavitt algebra $L_K(1, n), (ngeq 2)$, and the fact that Leavitt path algebras of finite graphs are rings of quotients of corresponding ordinary quiver algebras with respect to the perfect Gabriel topology defined by powers of the ideal generated by all arrows and sinks. In particular, the Jacobson algebra of one-sided inverses, that is, the Toeplitz algebra, can also be realized as a flat ring of quotients, further illuminating the rich structure of these beautiful, useful algebras." @default.
- W3198435162 created "2021-09-13" @default.
- W3198435162 creator A5038398051 @default.
- W3198435162 creator A5062767103 @default.
- W3198435162 date "2021-08-26" @default.
- W3198435162 modified "2023-09-27" @default.
- W3198435162 title "Leavitt Path Algebras as Flat Bimorphic Localizations" @default.
- W3198435162 cites W1537260518 @default.
- W3198435162 cites W1607595028 @default.
- W3198435162 cites W1968436506 @default.
- W3198435162 cites W1970968772 @default.
- W3198435162 cites W1992632472 @default.
- W3198435162 cites W1992726658 @default.
- W3198435162 cites W1996195439 @default.
- W3198435162 cites W2005888868 @default.
- W3198435162 cites W2044204239 @default.
- W3198435162 cites W2065373828 @default.
- W3198435162 cites W2073761272 @default.
- W3198435162 cites W2085546873 @default.
- W3198435162 cites W2089456245 @default.
- W3198435162 cites W2335016416 @default.
- W3198435162 cites W2999792396 @default.
- W3198435162 cites W574556491 @default.
- W3198435162 hasPublicationYear "2021" @default.
- W3198435162 type Work @default.
- W3198435162 sameAs 3198435162 @default.
- W3198435162 citedByCount "0" @default.
- W3198435162 crossrefType "posted-content" @default.
- W3198435162 hasAuthorship W3198435162A5038398051 @default.
- W3198435162 hasAuthorship W3198435162A5062767103 @default.
- W3198435162 hasConcept C111472728 @default.
- W3198435162 hasConcept C118615104 @default.
- W3198435162 hasConcept C118712358 @default.
- W3198435162 hasConcept C136119220 @default.
- W3198435162 hasConcept C138885662 @default.
- W3198435162 hasConcept C168310172 @default.
- W3198435162 hasConcept C178790620 @default.
- W3198435162 hasConcept C185592680 @default.
- W3198435162 hasConcept C199360897 @default.
- W3198435162 hasConcept C199422724 @default.
- W3198435162 hasConcept C202444582 @default.
- W3198435162 hasConcept C2776639384 @default.
- W3198435162 hasConcept C2777735758 @default.
- W3198435162 hasConcept C2780378348 @default.
- W3198435162 hasConcept C33923547 @default.
- W3198435162 hasConcept C41008148 @default.
- W3198435162 hasConcept C67996461 @default.
- W3198435162 hasConcept C83979697 @default.
- W3198435162 hasConceptScore W3198435162C111472728 @default.
- W3198435162 hasConceptScore W3198435162C118615104 @default.
- W3198435162 hasConceptScore W3198435162C118712358 @default.
- W3198435162 hasConceptScore W3198435162C136119220 @default.
- W3198435162 hasConceptScore W3198435162C138885662 @default.
- W3198435162 hasConceptScore W3198435162C168310172 @default.
- W3198435162 hasConceptScore W3198435162C178790620 @default.
- W3198435162 hasConceptScore W3198435162C185592680 @default.
- W3198435162 hasConceptScore W3198435162C199360897 @default.
- W3198435162 hasConceptScore W3198435162C199422724 @default.
- W3198435162 hasConceptScore W3198435162C202444582 @default.
- W3198435162 hasConceptScore W3198435162C2776639384 @default.
- W3198435162 hasConceptScore W3198435162C2777735758 @default.
- W3198435162 hasConceptScore W3198435162C2780378348 @default.
- W3198435162 hasConceptScore W3198435162C33923547 @default.
- W3198435162 hasConceptScore W3198435162C41008148 @default.
- W3198435162 hasConceptScore W3198435162C67996461 @default.
- W3198435162 hasConceptScore W3198435162C83979697 @default.
- W3198435162 hasLocation W31984351621 @default.
- W3198435162 hasOpenAccess W3198435162 @default.
- W3198435162 hasPrimaryLocation W31984351621 @default.
- W3198435162 hasRelatedWork W2005406549 @default.
- W3198435162 hasRelatedWork W2044511907 @default.
- W3198435162 hasRelatedWork W2046478758 @default.
- W3198435162 hasRelatedWork W2053608397 @default.
- W3198435162 hasRelatedWork W2180829774 @default.
- W3198435162 hasRelatedWork W2497081882 @default.
- W3198435162 hasRelatedWork W2591488207 @default.
- W3198435162 hasRelatedWork W2775793505 @default.
- W3198435162 hasRelatedWork W2917449998 @default.
- W3198435162 hasRelatedWork W2950249460 @default.
- W3198435162 hasRelatedWork W2950527902 @default.
- W3198435162 hasRelatedWork W2951012901 @default.
- W3198435162 hasRelatedWork W2952427242 @default.
- W3198435162 hasRelatedWork W2963635899 @default.
- W3198435162 hasRelatedWork W2963748713 @default.
- W3198435162 hasRelatedWork W2963893657 @default.
- W3198435162 hasRelatedWork W3120055942 @default.
- W3198435162 hasRelatedWork W3135026958 @default.
- W3198435162 hasRelatedWork W3135650777 @default.
- W3198435162 hasRelatedWork W782983527 @default.
- W3198435162 isParatext "false" @default.
- W3198435162 isRetracted "false" @default.
- W3198435162 magId "3198435162" @default.
- W3198435162 workType "article" @default.