Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198441004> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3198441004 abstract "Traditional data-driven diagnosis methods rely on manual feature extraction and it is difficult to adaptively extract effective features. Aiming at the characteristics of non-linear, non-stationary, and strong noise of rolling bearing faults, a novel intelligent fault diagnosis framework is proposed, which combines variational modal decomposition (VMD), convolution neural network (CNN) and long short term memory (LSTM) neural network. Firstly, the original bearing vibration signal is decomposed by VMD into a series of modal components containing fault characteristics. Secondly, the instantaneous frequency mean value method is used to determine the number of local modal components. And the two-dimensional feature matrix is composed of determined local feature components and the original data, which is the input of the CNN. Thirdly, the CNN is used to implicitly and adaptively extract the fault feature and its output is the input of LSTM layer. And the LSTM is used to extract time series information of fault signals. Finally, the output layer is used to realize the pattern recognition of multiple faults of the bearing using Softmax function. The experimental results show that the proposed method improves the accuracy of the diagnosis and overcome the shortcomings of the traditional diagnosis methods." @default.
- W3198441004 created "2021-09-13" @default.
- W3198441004 creator A5052955470 @default.
- W3198441004 creator A5063227132 @default.
- W3198441004 date "2021-08-01" @default.
- W3198441004 modified "2023-09-27" @default.
- W3198441004 title "Application of VMD Combined with CNN and LSTM in Motor Bearing Fault" @default.
- W3198441004 cites W1967666464 @default.
- W3198441004 cites W1980423287 @default.
- W3198441004 cites W2000982976 @default.
- W3198441004 cites W2018424543 @default.
- W3198441004 cites W2115954437 @default.
- W3198441004 cites W2485614840 @default.
- W3198441004 cites W2524141621 @default.
- W3198441004 cites W2538776421 @default.
- W3198441004 cites W2593479727 @default.
- W3198441004 cites W2809350318 @default.
- W3198441004 cites W2906186469 @default.
- W3198441004 cites W2916629768 @default.
- W3198441004 cites W2978219032 @default.
- W3198441004 cites W3149161027 @default.
- W3198441004 doi "https://doi.org/10.1109/iciea51954.2021.9516234" @default.
- W3198441004 hasPublicationYear "2021" @default.
- W3198441004 type Work @default.
- W3198441004 sameAs 3198441004 @default.
- W3198441004 citedByCount "2" @default.
- W3198441004 countsByYear W31984410042022 @default.
- W3198441004 countsByYear W31984410042023 @default.
- W3198441004 crossrefType "proceedings-article" @default.
- W3198441004 hasAuthorship W3198441004A5052955470 @default.
- W3198441004 hasAuthorship W3198441004A5063227132 @default.
- W3198441004 hasConcept C115961682 @default.
- W3198441004 hasConcept C127313418 @default.
- W3198441004 hasConcept C138885662 @default.
- W3198441004 hasConcept C153180895 @default.
- W3198441004 hasConcept C154945302 @default.
- W3198441004 hasConcept C165205528 @default.
- W3198441004 hasConcept C175551986 @default.
- W3198441004 hasConcept C185592680 @default.
- W3198441004 hasConcept C188027245 @default.
- W3198441004 hasConcept C188441871 @default.
- W3198441004 hasConcept C199360897 @default.
- W3198441004 hasConcept C199978012 @default.
- W3198441004 hasConcept C2776401178 @default.
- W3198441004 hasConcept C2779843651 @default.
- W3198441004 hasConcept C41008148 @default.
- W3198441004 hasConcept C41895202 @default.
- W3198441004 hasConcept C45347329 @default.
- W3198441004 hasConcept C50644808 @default.
- W3198441004 hasConcept C52622490 @default.
- W3198441004 hasConcept C71139939 @default.
- W3198441004 hasConcept C81363708 @default.
- W3198441004 hasConcept C99498987 @default.
- W3198441004 hasConceptScore W3198441004C115961682 @default.
- W3198441004 hasConceptScore W3198441004C127313418 @default.
- W3198441004 hasConceptScore W3198441004C138885662 @default.
- W3198441004 hasConceptScore W3198441004C153180895 @default.
- W3198441004 hasConceptScore W3198441004C154945302 @default.
- W3198441004 hasConceptScore W3198441004C165205528 @default.
- W3198441004 hasConceptScore W3198441004C175551986 @default.
- W3198441004 hasConceptScore W3198441004C185592680 @default.
- W3198441004 hasConceptScore W3198441004C188027245 @default.
- W3198441004 hasConceptScore W3198441004C188441871 @default.
- W3198441004 hasConceptScore W3198441004C199360897 @default.
- W3198441004 hasConceptScore W3198441004C199978012 @default.
- W3198441004 hasConceptScore W3198441004C2776401178 @default.
- W3198441004 hasConceptScore W3198441004C2779843651 @default.
- W3198441004 hasConceptScore W3198441004C41008148 @default.
- W3198441004 hasConceptScore W3198441004C41895202 @default.
- W3198441004 hasConceptScore W3198441004C45347329 @default.
- W3198441004 hasConceptScore W3198441004C50644808 @default.
- W3198441004 hasConceptScore W3198441004C52622490 @default.
- W3198441004 hasConceptScore W3198441004C71139939 @default.
- W3198441004 hasConceptScore W3198441004C81363708 @default.
- W3198441004 hasConceptScore W3198441004C99498987 @default.
- W3198441004 hasLocation W31984410041 @default.
- W3198441004 hasOpenAccess W3198441004 @default.
- W3198441004 hasPrimaryLocation W31984410041 @default.
- W3198441004 hasRelatedWork W2059299633 @default.
- W3198441004 hasRelatedWork W2352072136 @default.
- W3198441004 hasRelatedWork W2613736958 @default.
- W3198441004 hasRelatedWork W2732542196 @default.
- W3198441004 hasRelatedWork W2743258233 @default.
- W3198441004 hasRelatedWork W2758063741 @default.
- W3198441004 hasRelatedWork W2760085659 @default.
- W3198441004 hasRelatedWork W2807311372 @default.
- W3198441004 hasRelatedWork W2977314777 @default.
- W3198441004 hasRelatedWork W3093842373 @default.
- W3198441004 isParatext "false" @default.
- W3198441004 isRetracted "false" @default.
- W3198441004 magId "3198441004" @default.
- W3198441004 workType "article" @default.