Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198517147> ?p ?o ?g. }
- W3198517147 abstract "Accurately forecasting ridesourcing demand is important for effective transportation planning and policy-making. With the rise of Artificial Intelligence (AI), researchers have started to utilize machine learning models to forecast travel demand, which, in many cases, can produce higher prediction accuracy than statistical models. However, most existing machine-learning studies used a global model to predict the demand and ignored the influence of spatial heterogeneity (i.e., the spatial variations in the impacts of explanatory variables). Spatial heterogeneity can drive the parameter estimations varying over space; failing to consider the spatial variations may limit the model's prediction performance. To account for spatial heterogeneity, this study proposes a Clustering-aided Ensemble Method (CEM) to forecast the zone-to-zone (census-tract-to-census-tract) travel demand for ridesourcing services. Specifically, we develop a clustering framework to split the origin-destination pairs into different clusters and ensemble the cluster-specific machine learning models for prediction. We implement and test the proposed methodology by using the ridesourcing-trip data in Chicago. The results show that, with a more transparent and flexible model structure, the CEM significantly improves the prediction accuracy than the benchmark models (i.e., global machine-learning and statistical models directly trained on all observations). This study offers transportation researchers and practitioners a new methodology of travel demand forecasting, especially for new travel modes like ridesourcing and micromobility." @default.
- W3198517147 created "2021-09-13" @default.
- W3198517147 creator A5041844530 @default.
- W3198517147 creator A5078723316 @default.
- W3198517147 date "2021-09-08" @default.
- W3198517147 modified "2023-10-18" @default.
- W3198517147 title "A Clustering-aided Ensemble Method for Predicting Ridesourcing Demand in Chicago" @default.
- W3198517147 cites W1491003469 @default.
- W3198517147 cites W1554944419 @default.
- W3198517147 cites W1678356000 @default.
- W3198517147 cites W1971784203 @default.
- W3198517147 cites W1971829078 @default.
- W3198517147 cites W1984832305 @default.
- W3198517147 cites W1993281685 @default.
- W3198517147 cites W1996658168 @default.
- W3198517147 cites W2023171043 @default.
- W3198517147 cites W2025707815 @default.
- W3198517147 cites W2050928156 @default.
- W3198517147 cites W2051224630 @default.
- W3198517147 cites W2052250659 @default.
- W3198517147 cites W2064329629 @default.
- W3198517147 cites W2082593161 @default.
- W3198517147 cites W2094360749 @default.
- W3198517147 cites W2103970002 @default.
- W3198517147 cites W2119821739 @default.
- W3198517147 cites W2122410182 @default.
- W3198517147 cites W2132549764 @default.
- W3198517147 cites W2154776925 @default.
- W3198517147 cites W2224902226 @default.
- W3198517147 cites W2242397416 @default.
- W3198517147 cites W2314720829 @default.
- W3198517147 cites W2515292392 @default.
- W3198517147 cites W2604877585 @default.
- W3198517147 cites W2785316371 @default.
- W3198517147 cites W2789394811 @default.
- W3198517147 cites W2792803029 @default.
- W3198517147 cites W2795730973 @default.
- W3198517147 cites W2803025171 @default.
- W3198517147 cites W2810872466 @default.
- W3198517147 cites W2883063568 @default.
- W3198517147 cites W2883201703 @default.
- W3198517147 cites W2890500601 @default.
- W3198517147 cites W2895356091 @default.
- W3198517147 cites W2903557836 @default.
- W3198517147 cites W2904430055 @default.
- W3198517147 cites W2904832339 @default.
- W3198517147 cites W2907097343 @default.
- W3198517147 cites W2911964244 @default.
- W3198517147 cites W2912934387 @default.
- W3198517147 cites W2914285535 @default.
- W3198517147 cites W2943360680 @default.
- W3198517147 cites W2943827744 @default.
- W3198517147 cites W2945526235 @default.
- W3198517147 cites W2946789497 @default.
- W3198517147 cites W2956045439 @default.
- W3198517147 cites W2963830620 @default.
- W3198517147 cites W2981570580 @default.
- W3198517147 cites W3005719907 @default.
- W3198517147 cites W3006087551 @default.
- W3198517147 cites W3006958671 @default.
- W3198517147 cites W3007474027 @default.
- W3198517147 cites W3008392016 @default.
- W3198517147 cites W3014121980 @default.
- W3198517147 cites W3027402057 @default.
- W3198517147 cites W3037391216 @default.
- W3198517147 cites W3044582809 @default.
- W3198517147 cites W3083743162 @default.
- W3198517147 cites W3085982689 @default.
- W3198517147 cites W3093055868 @default.
- W3198517147 cites W3102476541 @default.
- W3198517147 cites W3106122615 @default.
- W3198517147 cites W3118378166 @default.
- W3198517147 cites W3120106897 @default.
- W3198517147 cites W3125809028 @default.
- W3198517147 cites W3148585797 @default.
- W3198517147 cites W323291900 @default.
- W3198517147 doi "https://doi.org/10.48550/arxiv.2109.03433" @default.
- W3198517147 hasPublicationYear "2021" @default.
- W3198517147 type Work @default.
- W3198517147 sameAs 3198517147 @default.
- W3198517147 citedByCount "0" @default.
- W3198517147 crossrefType "posted-content" @default.
- W3198517147 hasAuthorship W3198517147A5041844530 @default.
- W3198517147 hasAuthorship W3198517147A5078723316 @default.
- W3198517147 hasBestOaLocation W31985171471 @default.
- W3198517147 hasConcept C119857082 @default.
- W3198517147 hasConcept C124101348 @default.
- W3198517147 hasConcept C127413603 @default.
- W3198517147 hasConcept C13280743 @default.
- W3198517147 hasConcept C149782125 @default.
- W3198517147 hasConcept C154945302 @default.
- W3198517147 hasConcept C185798385 @default.
- W3198517147 hasConcept C193809577 @default.
- W3198517147 hasConcept C205649164 @default.
- W3198517147 hasConcept C33923547 @default.
- W3198517147 hasConcept C41008148 @default.
- W3198517147 hasConcept C42475967 @default.
- W3198517147 hasConcept C45804977 @default.
- W3198517147 hasConcept C45942800 @default.
- W3198517147 hasConcept C73555534 @default.