Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198543092> ?p ?o ?g. }
- W3198543092 endingPage "104445" @default.
- W3198543092 startingPage "104445" @default.
- W3198543092 abstract "Data-driven fault diagnosis methods have become a research hotspot recently. However, the following two problems are still barring them from the application: (1) Most of the existing models rely deeply on sufficient labeled samples and neglect the high cost of labeled data collection in reality; (2) The existing models usually focus on the single-level attribute of the sample and ignore the latent hierarchical fault attributes. To address these issues, a novel semi-supervised multi-layer non-negative matrix factorization (SMNMF) method is proposed in this study. The fault pattern and severity identification problems are converted into a hierarchical fault attribute representation task, which can reduce the complexity of the classification task and improve the fault diagnosis accuracy. The hierarchical attribute representations of different fault locations and sizes are learned from the time-frequency distribution (TFD) of signals by a newly constructed two-layer non-negative matrix factorization model. The graph-based semi-supervised learning method is adopted to lead the attributes of the hierarchy structure and carry out label propagation from labeled samples to unlabeled samples for more accurate fault diagnosis. The fault diagnosis experiments executed in the aeroengine bearings and a diesel engine demonstrated the feasibility and superiority of the proposed method." @default.
- W3198543092 created "2021-09-13" @default.
- W3198543092 creator A5001623885 @default.
- W3198543092 creator A5002976448 @default.
- W3198543092 creator A5011204469 @default.
- W3198543092 creator A5013302911 @default.
- W3198543092 creator A5028432371 @default.
- W3198543092 creator A5052855960 @default.
- W3198543092 date "2022-01-01" @default.
- W3198543092 modified "2023-10-12" @default.
- W3198543092 title "Semi-supervised hierarchical attribute representation learning via multi-layer matrix factorization for machinery fault diagnosis" @default.
- W3198543092 cites W1184075528 @default.
- W3198543092 cites W1902027874 @default.
- W3198543092 cites W1991941961 @default.
- W3198543092 cites W2108119513 @default.
- W3198543092 cites W2109685970 @default.
- W3198543092 cites W2574831037 @default.
- W3198543092 cites W2598164018 @default.
- W3198543092 cites W2692693673 @default.
- W3198543092 cites W2791694051 @default.
- W3198543092 cites W2891855514 @default.
- W3198543092 cites W2899318073 @default.
- W3198543092 cites W2906578288 @default.
- W3198543092 cites W2911725274 @default.
- W3198543092 cites W2915229515 @default.
- W3198543092 cites W2930999278 @default.
- W3198543092 cites W2947547341 @default.
- W3198543092 cites W2957568672 @default.
- W3198543092 cites W2979957397 @default.
- W3198543092 cites W2981308414 @default.
- W3198543092 cites W2987581600 @default.
- W3198543092 cites W2997605245 @default.
- W3198543092 cites W2998506103 @default.
- W3198543092 cites W2998970859 @default.
- W3198543092 cites W3005704212 @default.
- W3198543092 cites W3006505613 @default.
- W3198543092 cites W3015913963 @default.
- W3198543092 cites W3016159209 @default.
- W3198543092 cites W3018957240 @default.
- W3198543092 cites W3021294679 @default.
- W3198543092 cites W3022769603 @default.
- W3198543092 cites W3048208826 @default.
- W3198543092 cites W3049504263 @default.
- W3198543092 cites W3094110601 @default.
- W3198543092 doi "https://doi.org/10.1016/j.mechmachtheory.2021.104445" @default.
- W3198543092 hasPublicationYear "2022" @default.
- W3198543092 type Work @default.
- W3198543092 sameAs 3198543092 @default.
- W3198543092 citedByCount "12" @default.
- W3198543092 countsByYear W31985430922021 @default.
- W3198543092 countsByYear W31985430922022 @default.
- W3198543092 countsByYear W31985430922023 @default.
- W3198543092 crossrefType "journal-article" @default.
- W3198543092 hasAuthorship W3198543092A5001623885 @default.
- W3198543092 hasAuthorship W3198543092A5002976448 @default.
- W3198543092 hasAuthorship W3198543092A5011204469 @default.
- W3198543092 hasAuthorship W3198543092A5013302911 @default.
- W3198543092 hasAuthorship W3198543092A5028432371 @default.
- W3198543092 hasAuthorship W3198543092A5052855960 @default.
- W3198543092 hasConcept C119857082 @default.
- W3198543092 hasConcept C121332964 @default.
- W3198543092 hasConcept C124101348 @default.
- W3198543092 hasConcept C127313418 @default.
- W3198543092 hasConcept C127413603 @default.
- W3198543092 hasConcept C132525143 @default.
- W3198543092 hasConcept C153180895 @default.
- W3198543092 hasConcept C154945302 @default.
- W3198543092 hasConcept C158693339 @default.
- W3198543092 hasConcept C162324750 @default.
- W3198543092 hasConcept C165205528 @default.
- W3198543092 hasConcept C175551986 @default.
- W3198543092 hasConcept C201995342 @default.
- W3198543092 hasConcept C2780451532 @default.
- W3198543092 hasConcept C31170391 @default.
- W3198543092 hasConcept C34447519 @default.
- W3198543092 hasConcept C41008148 @default.
- W3198543092 hasConcept C42355184 @default.
- W3198543092 hasConcept C62520636 @default.
- W3198543092 hasConcept C80444323 @default.
- W3198543092 hasConceptScore W3198543092C119857082 @default.
- W3198543092 hasConceptScore W3198543092C121332964 @default.
- W3198543092 hasConceptScore W3198543092C124101348 @default.
- W3198543092 hasConceptScore W3198543092C127313418 @default.
- W3198543092 hasConceptScore W3198543092C127413603 @default.
- W3198543092 hasConceptScore W3198543092C132525143 @default.
- W3198543092 hasConceptScore W3198543092C153180895 @default.
- W3198543092 hasConceptScore W3198543092C154945302 @default.
- W3198543092 hasConceptScore W3198543092C158693339 @default.
- W3198543092 hasConceptScore W3198543092C162324750 @default.
- W3198543092 hasConceptScore W3198543092C165205528 @default.
- W3198543092 hasConceptScore W3198543092C175551986 @default.
- W3198543092 hasConceptScore W3198543092C201995342 @default.
- W3198543092 hasConceptScore W3198543092C2780451532 @default.
- W3198543092 hasConceptScore W3198543092C31170391 @default.
- W3198543092 hasConceptScore W3198543092C34447519 @default.
- W3198543092 hasConceptScore W3198543092C41008148 @default.
- W3198543092 hasConceptScore W3198543092C42355184 @default.
- W3198543092 hasConceptScore W3198543092C62520636 @default.