Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198568876> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3198568876 endingPage "20" @default.
- W3198568876 startingPage "15" @default.
- W3198568876 abstract "In the banking system, banks have a variety of products to provide, but credit lines are their primary source of revenue. As a result, they will profit from the interest earned on the loans they make. Loans, or whether customers repay or default on their loans, affect a bank's profit or loss. The bank's Non-Performing Assets will be reduced by forecasting loan defaulters. As a result, further investigation into this occurrence is essential. Because precise forecasts are essential for benefit maximisation, it's crucial to analyse and compare the various methodologies. The logistic regression model is an important predictive analytics tool for detecting loan defaulters. In order to assess and forecast, data from Kaggle is acquired. Logistic Regression models were used to calculate the various performance indicators. The models are compared using performance metrics like sensitivity and specificity. In addition to checking account details (which indicate a customer's wealth), the model is significantly better because it includes variables (customer personal attributes such as age, objective, credit score, credit amount, credit period, and so on) that should be considered when correctly calculating the probability of loan default. As a result, using a logistic regression approach, the appropriate clients to target for loan issuance can be easily identified by evaluating their plausibility of loan default. The model implies that a bank should assess a creditor's other attributes, which play a critical role in credit decisions and forecasting loan defaulters, in addition to giving loans to wealthy borrowers." @default.
- W3198568876 created "2021-09-13" @default.
- W3198568876 creator A5014227609 @default.
- W3198568876 creator A5019491617 @default.
- W3198568876 creator A5033569608 @default.
- W3198568876 creator A5072184217 @default.
- W3198568876 date "2021-09-04" @default.
- W3198568876 modified "2023-10-02" @default.
- W3198568876 title "Analysis of Loan Availability using Machine Learning Techniques" @default.
- W3198568876 cites W2263636437 @default.
- W3198568876 cites W2346117349 @default.
- W3198568876 cites W2772016071 @default.
- W3198568876 cites W2958119014 @default.
- W3198568876 cites W3002469388 @default.
- W3198568876 cites W3044683821 @default.
- W3198568876 cites W3047560809 @default.
- W3198568876 cites W3121259054 @default.
- W3198568876 doi "https://doi.org/10.48175/ijarsct-1895" @default.
- W3198568876 hasPublicationYear "2021" @default.
- W3198568876 type Work @default.
- W3198568876 sameAs 3198568876 @default.
- W3198568876 citedByCount "6" @default.
- W3198568876 countsByYear W31985688762022 @default.
- W3198568876 countsByYear W31985688762023 @default.
- W3198568876 crossrefType "journal-article" @default.
- W3198568876 hasAuthorship W3198568876A5014227609 @default.
- W3198568876 hasAuthorship W3198568876A5019491617 @default.
- W3198568876 hasAuthorship W3198568876A5033569608 @default.
- W3198568876 hasAuthorship W3198568876A5072184217 @default.
- W3198568876 hasBestOaLocation W31985688761 @default.
- W3198568876 hasConcept C10138342 @default.
- W3198568876 hasConcept C119857082 @default.
- W3198568876 hasConcept C144133560 @default.
- W3198568876 hasConcept C149782125 @default.
- W3198568876 hasConcept C151956035 @default.
- W3198568876 hasConcept C158502994 @default.
- W3198568876 hasConcept C162118730 @default.
- W3198568876 hasConcept C162324750 @default.
- W3198568876 hasConcept C175444787 @default.
- W3198568876 hasConcept C178350159 @default.
- W3198568876 hasConcept C181622380 @default.
- W3198568876 hasConcept C195487862 @default.
- W3198568876 hasConcept C2229670 @default.
- W3198568876 hasConcept C2777764128 @default.
- W3198568876 hasConcept C2779806880 @default.
- W3198568876 hasConcept C41008148 @default.
- W3198568876 hasConcept C69637215 @default.
- W3198568876 hasConcept C71387314 @default.
- W3198568876 hasConceptScore W3198568876C10138342 @default.
- W3198568876 hasConceptScore W3198568876C119857082 @default.
- W3198568876 hasConceptScore W3198568876C144133560 @default.
- W3198568876 hasConceptScore W3198568876C149782125 @default.
- W3198568876 hasConceptScore W3198568876C151956035 @default.
- W3198568876 hasConceptScore W3198568876C158502994 @default.
- W3198568876 hasConceptScore W3198568876C162118730 @default.
- W3198568876 hasConceptScore W3198568876C162324750 @default.
- W3198568876 hasConceptScore W3198568876C175444787 @default.
- W3198568876 hasConceptScore W3198568876C178350159 @default.
- W3198568876 hasConceptScore W3198568876C181622380 @default.
- W3198568876 hasConceptScore W3198568876C195487862 @default.
- W3198568876 hasConceptScore W3198568876C2229670 @default.
- W3198568876 hasConceptScore W3198568876C2777764128 @default.
- W3198568876 hasConceptScore W3198568876C2779806880 @default.
- W3198568876 hasConceptScore W3198568876C41008148 @default.
- W3198568876 hasConceptScore W3198568876C69637215 @default.
- W3198568876 hasConceptScore W3198568876C71387314 @default.
- W3198568876 hasLocation W31985688761 @default.
- W3198568876 hasOpenAccess W3198568876 @default.
- W3198568876 hasPrimaryLocation W31985688761 @default.
- W3198568876 hasRelatedWork W2114745052 @default.
- W3198568876 hasRelatedWork W2185712725 @default.
- W3198568876 hasRelatedWork W2378300547 @default.
- W3198568876 hasRelatedWork W2487731528 @default.
- W3198568876 hasRelatedWork W2725772539 @default.
- W3198568876 hasRelatedWork W2945156058 @default.
- W3198568876 hasRelatedWork W3125534854 @default.
- W3198568876 hasRelatedWork W3199335620 @default.
- W3198568876 hasRelatedWork W4306942258 @default.
- W3198568876 hasRelatedWork W4376647649 @default.
- W3198568876 isParatext "false" @default.
- W3198568876 isRetracted "false" @default.
- W3198568876 magId "3198568876" @default.
- W3198568876 workType "article" @default.