Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198632068> ?p ?o ?g. }
- W3198632068 endingPage "120202" @default.
- W3198632068 startingPage "120193" @default.
- W3198632068 abstract "Most of the existing laser welding quality identification methods are post-weld identification or low-speed identification (Welding speed below 120m/min). Efficiently online monitoring of laser welding can take the advantages of laser welding for high-speed and deep-penetration welding. How to eliminate interference information (such as metal vapor, plasma splash, etc.) in the laser welding process, accurately and quickly extract the feature information of welding quality evaluation, and identify defects is a major problem that laser welding online monitoring technology needs to solve urgently. In this paper, the optimized dark channel prior anti-interference processing algorithm can remove the interference of image. The feature information extraction algorithm based on contour and OTSU threshold segmentation are used to extract the features of the welding image that collected by the image acquisition system. Then, the image is classified as a specific defect by the trained BP neural network classification algorithm. Experiments with 304 stainless steels have proved that this method can effectively remove the interference of metal vapor and plasma splash on the feature information, and achieves 97.18% accuracy rate of the binary classification test and 91.29% accuracy rate of the six-classification test. The processing time of the entire algorithm is about 0.3ms and it can meet the real-time requirements of high-speed laser welding." @default.
- W3198632068 created "2021-09-13" @default.
- W3198632068 creator A5016917231 @default.
- W3198632068 creator A5023595596 @default.
- W3198632068 creator A5034299045 @default.
- W3198632068 creator A5036284082 @default.
- W3198632068 creator A5067685509 @default.
- W3198632068 date "2021-01-01" @default.
- W3198632068 modified "2023-10-14" @default.
- W3198632068 title "Feature Extraction of Laser Welding Pool Image and Application in Welding Quality Identification" @default.
- W3198632068 cites W1983906873 @default.
- W3198632068 cites W1988145405 @default.
- W3198632068 cites W1988411121 @default.
- W3198632068 cites W2005702076 @default.
- W3198632068 cites W2019117580 @default.
- W3198632068 cites W2026039230 @default.
- W3198632068 cites W2032743230 @default.
- W3198632068 cites W2032780809 @default.
- W3198632068 cites W2035238958 @default.
- W3198632068 cites W2055478483 @default.
- W3198632068 cites W2058540154 @default.
- W3198632068 cites W2067467000 @default.
- W3198632068 cites W2075682317 @default.
- W3198632068 cites W2077110826 @default.
- W3198632068 cites W2111574971 @default.
- W3198632068 cites W2125188192 @default.
- W3198632068 cites W2133059825 @default.
- W3198632068 cites W2146910203 @default.
- W3198632068 cites W2153635508 @default.
- W3198632068 cites W2159498975 @default.
- W3198632068 cites W2163924129 @default.
- W3198632068 cites W2167526826 @default.
- W3198632068 cites W2331055734 @default.
- W3198632068 cites W2558283806 @default.
- W3198632068 cites W2582667974 @default.
- W3198632068 cites W2588054711 @default.
- W3198632068 cites W2619004999 @default.
- W3198632068 cites W2797662745 @default.
- W3198632068 cites W2903452865 @default.
- W3198632068 cites W2910697711 @default.
- W3198632068 cites W2912272978 @default.
- W3198632068 cites W2921555321 @default.
- W3198632068 cites W2941542910 @default.
- W3198632068 cites W2954894781 @default.
- W3198632068 cites W2961116293 @default.
- W3198632068 cites W2965654644 @default.
- W3198632068 cites W2966550584 @default.
- W3198632068 cites W2969533658 @default.
- W3198632068 cites W2980060779 @default.
- W3198632068 cites W2984987013 @default.
- W3198632068 cites W2995865783 @default.
- W3198632068 cites W3007118889 @default.
- W3198632068 cites W3012467327 @default.
- W3198632068 cites W3015817002 @default.
- W3198632068 cites W3119019387 @default.
- W3198632068 cites W3124526182 @default.
- W3198632068 cites W4256219538 @default.
- W3198632068 doi "https://doi.org/10.1109/access.2021.3108462" @default.
- W3198632068 hasPublicationYear "2021" @default.
- W3198632068 type Work @default.
- W3198632068 sameAs 3198632068 @default.
- W3198632068 citedByCount "11" @default.
- W3198632068 countsByYear W31986320682021 @default.
- W3198632068 countsByYear W31986320682022 @default.
- W3198632068 countsByYear W31986320682023 @default.
- W3198632068 crossrefType "journal-article" @default.
- W3198632068 hasAuthorship W3198632068A5016917231 @default.
- W3198632068 hasAuthorship W3198632068A5023595596 @default.
- W3198632068 hasAuthorship W3198632068A5034299045 @default.
- W3198632068 hasAuthorship W3198632068A5036284082 @default.
- W3198632068 hasAuthorship W3198632068A5067685509 @default.
- W3198632068 hasBestOaLocation W31986320681 @default.
- W3198632068 hasConcept C115961682 @default.
- W3198632068 hasConcept C120665830 @default.
- W3198632068 hasConcept C121332964 @default.
- W3198632068 hasConcept C124504099 @default.
- W3198632068 hasConcept C127413603 @default.
- W3198632068 hasConcept C138885662 @default.
- W3198632068 hasConcept C153180895 @default.
- W3198632068 hasConcept C154945302 @default.
- W3198632068 hasConcept C191897082 @default.
- W3198632068 hasConcept C192562407 @default.
- W3198632068 hasConcept C19474535 @default.
- W3198632068 hasConcept C2776401178 @default.
- W3198632068 hasConcept C2780644530 @default.
- W3198632068 hasConcept C31972630 @default.
- W3198632068 hasConcept C41008148 @default.
- W3198632068 hasConcept C41895202 @default.
- W3198632068 hasConcept C520434653 @default.
- W3198632068 hasConcept C52622490 @default.
- W3198632068 hasConcept C78519656 @default.
- W3198632068 hasConcept C89344249 @default.
- W3198632068 hasConcept C89600930 @default.
- W3198632068 hasConcept C9417928 @default.
- W3198632068 hasConceptScore W3198632068C115961682 @default.
- W3198632068 hasConceptScore W3198632068C120665830 @default.
- W3198632068 hasConceptScore W3198632068C121332964 @default.
- W3198632068 hasConceptScore W3198632068C124504099 @default.