Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198633411> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3198633411 abstract "PreviousNext No AccessFirst International Meeting for Applied Geoscience & Energy Expanded AbstractsStratigraphic automatic correlation using SegNet semantic segmentation modelAuthors: Yue DaiXuri HuangHaojie LiuHongwei YangGuohua WeiNing LuZhiying HanHaibo SongYue DaiSouthwest Petroleum UniversitySearch for more papers by this author, Xuri HuangSouthwest Petroleum UniversitySearch for more papers by this author, Haojie LiuSinopec Shengli Oilfield CompanySearch for more papers by this author, Hongwei YangSinopec Shengli Oilfield CompanySearch for more papers by this author, Guohua WeiSinopec Shengli Oilfield CompanySearch for more papers by this author, Ning LuSinopec Shengli Oilfield CompanySearch for more papers by this author, Zhiying HanSinopec Shengli Oilfield CompanySearch for more papers by this author, and Haibo SongBeijing Sunrise PetroSolutions Tech., LtdSearch for more papers by this authorhttps://doi.org/10.1190/segam2021-3584720.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractA multi-task encoder-decoder based on SegNet architecture is proposed for automatic stratigraphic correlation in this work. In order to have higher resolution correlation, logs and their wavelet transformed results are combined to form the training datasets. In addition, two types of loss functions for the SegNet are used to achieve high-resolution results. By applying this method to a field in Shengli Oilfield, the result demonstrates that this network can obtain accurate stratigraphic correlation and is significantly efficient compared to the conventional manual method. Using the correlated results and combined with dip attribute from seismic data, an isochronal stratigraphic framework is built for geological modeling and study. This work demonstrates that SegNet can be a reliable automatic well log correlation technique with high efficiency and accuracy.Keywords: well-log, interpretation, machine learning, modelingPermalink: https://doi.org/10.1190/segam2021-3584720.1FiguresReferencesRelatedDetails First International Meeting for Applied Geoscience & Energy Expanded AbstractsISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2021 Pages: 3561 publication data© 2021 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished: 01 Sep 2021 CITATION INFORMATION Yue Dai, Xuri Huang, Haojie Liu, Hongwei Yang, Guohua Wei, Ning Lu, Zhiying Han, and Haibo Song, (2021), Stratigraphic automatic correlation using SegNet semantic segmentation model, SEG Technical Program Expanded Abstracts : 1591-1595. https://doi.org/10.1190/segam2021-3584720.1 Plain-Language Summary Keywordswell-log interpretationmachine learningmodelingPDF DownloadLoading ..." @default.
- W3198633411 created "2021-09-13" @default.
- W3198633411 creator A5000576780 @default.
- W3198633411 creator A5017369696 @default.
- W3198633411 creator A5024107822 @default.
- W3198633411 creator A5031798420 @default.
- W3198633411 creator A5032239293 @default.
- W3198633411 creator A5040569295 @default.
- W3198633411 creator A5047516073 @default.
- W3198633411 creator A5071339229 @default.
- W3198633411 date "2021-09-01" @default.
- W3198633411 modified "2023-10-03" @default.
- W3198633411 title "Stratigraphic automatic correlation using SegNet semantic segmentation model" @default.
- W3198633411 cites W1964644329 @default.
- W3198633411 cites W1975418543 @default.
- W3198633411 cites W2018509690 @default.
- W3198633411 cites W2059386657 @default.
- W3198633411 cites W2093132633 @default.
- W3198633411 cites W2106259684 @default.
- W3198633411 cites W2130572633 @default.
- W3198633411 cites W2155977690 @default.
- W3198633411 cites W2963881378 @default.
- W3198633411 doi "https://doi.org/10.1190/segam2021-3584720.1" @default.
- W3198633411 hasPublicationYear "2021" @default.
- W3198633411 type Work @default.
- W3198633411 sameAs 3198633411 @default.
- W3198633411 citedByCount "2" @default.
- W3198633411 countsByYear W31986334112023 @default.
- W3198633411 crossrefType "proceedings-article" @default.
- W3198633411 hasAuthorship W3198633411A5000576780 @default.
- W3198633411 hasAuthorship W3198633411A5017369696 @default.
- W3198633411 hasAuthorship W3198633411A5024107822 @default.
- W3198633411 hasAuthorship W3198633411A5031798420 @default.
- W3198633411 hasAuthorship W3198633411A5032239293 @default.
- W3198633411 hasAuthorship W3198633411A5040569295 @default.
- W3198633411 hasAuthorship W3198633411A5047516073 @default.
- W3198633411 hasAuthorship W3198633411A5071339229 @default.
- W3198633411 hasConcept C124101348 @default.
- W3198633411 hasConcept C127313418 @default.
- W3198633411 hasConcept C151730666 @default.
- W3198633411 hasConcept C154945302 @default.
- W3198633411 hasConcept C41008148 @default.
- W3198633411 hasConcept C548895740 @default.
- W3198633411 hasConcept C89600930 @default.
- W3198633411 hasConceptScore W3198633411C124101348 @default.
- W3198633411 hasConceptScore W3198633411C127313418 @default.
- W3198633411 hasConceptScore W3198633411C151730666 @default.
- W3198633411 hasConceptScore W3198633411C154945302 @default.
- W3198633411 hasConceptScore W3198633411C41008148 @default.
- W3198633411 hasConceptScore W3198633411C548895740 @default.
- W3198633411 hasConceptScore W3198633411C89600930 @default.
- W3198633411 hasLocation W31986334111 @default.
- W3198633411 hasOpenAccess W3198633411 @default.
- W3198633411 hasPrimaryLocation W31986334111 @default.
- W3198633411 hasRelatedWork W144883078 @default.
- W3198633411 hasRelatedWork W2005437358 @default.
- W3198633411 hasRelatedWork W2138214894 @default.
- W3198633411 hasRelatedWork W2358941527 @default.
- W3198633411 hasRelatedWork W2361006516 @default.
- W3198633411 hasRelatedWork W2517104666 @default.
- W3198633411 hasRelatedWork W2532775738 @default.
- W3198633411 hasRelatedWork W2954384599 @default.
- W3198633411 hasRelatedWork W3089607159 @default.
- W3198633411 hasRelatedWork W4385556756 @default.
- W3198633411 isParatext "false" @default.
- W3198633411 isRetracted "false" @default.
- W3198633411 magId "3198633411" @default.
- W3198633411 workType "article" @default.