Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198673929> ?p ?o ?g. }
- W3198673929 endingPage "53453" @default.
- W3198673929 startingPage "53439" @default.
- W3198673929 abstract "There has been a surge of interest in applying deep learning (DL) to microstructure generation and materials design. However, existing DL-based methods are generally limited in generating (1) microstructures with high resolution, (2) microstructures with high variability, (3) microstructures with guaranteed periodicity, and (4) highly controllable microstructures. In this study, a DL approach based on a stacked generative adversarial network (StackGAN-v2) is proposed to overcome these shortcomings. The presented modeling approach can reconstruct high-fidelity microstructures of additively manufactured piezoceramics with different resolutions, which are statistically equivalent to original microstructures either experimentally observed or numerically predicted. Advantages of the proposed modeling approach are also illustrated in terms of its capability in controlling the probability density function (PDF) of grain size, grain orientation, and micropore in a large space, which would have significant benefits in exploring the effects of these microstructure features on the piezoelectricity of piezoceramics. In the meantime, periodicity of the microstructures has been successfully introduced in the developed model, which can critically reduce the simulation volume to be considered as a representative volume element (RVE) during computational calculation of piezoelectric properties. Therefore, this DL approach can significantly accelerate the process of designing optimal microstructures when integrating with computational methods (e.g., fast Fourier spectral iterative perturbation (FSIPM)) to achieve desired piezoelectric properties. The proposed DL-based method is generally applicable to optimal design of a variety of periodic microstructures, allowing for maximum explorations of design spaces and fine manipulations of microstructural features." @default.
- W3198673929 created "2021-09-13" @default.
- W3198673929 creator A5007948807 @default.
- W3198673929 creator A5010738468 @default.
- W3198673929 creator A5039374096 @default.
- W3198673929 creator A5054067619 @default.
- W3198673929 creator A5067736547 @default.
- W3198673929 creator A5080268249 @default.
- W3198673929 creator A5084702152 @default.
- W3198673929 date "2021-09-01" @default.
- W3198673929 modified "2023-10-15" @default.
- W3198673929 title "Exploration of the Underlying Space in Microscopic Images via Deep Learning for Additively Manufactured Piezoceramics" @default.
- W3198673929 cites W1849277567 @default.
- W3198673929 cites W1978405977 @default.
- W3198673929 cites W1979416949 @default.
- W3198673929 cites W1984468990 @default.
- W3198673929 cites W1984966193 @default.
- W3198673929 cites W1989373517 @default.
- W3198673929 cites W2001803518 @default.
- W3198673929 cites W2002204311 @default.
- W3198673929 cites W2014605416 @default.
- W3198673929 cites W2023270335 @default.
- W3198673929 cites W2025509715 @default.
- W3198673929 cites W2034318711 @default.
- W3198673929 cites W2035006308 @default.
- W3198673929 cites W2038043295 @default.
- W3198673929 cites W2049904622 @default.
- W3198673929 cites W2054597437 @default.
- W3198673929 cites W2061229175 @default.
- W3198673929 cites W2066061312 @default.
- W3198673929 cites W2072900443 @default.
- W3198673929 cites W2084313086 @default.
- W3198673929 cites W2086774128 @default.
- W3198673929 cites W2096997237 @default.
- W3198673929 cites W2099540110 @default.
- W3198673929 cites W2102120659 @default.
- W3198673929 cites W2120192712 @default.
- W3198673929 cites W2135797963 @default.
- W3198673929 cites W2141083815 @default.
- W3198673929 cites W2149645158 @default.
- W3198673929 cites W2158390749 @default.
- W3198673929 cites W2423792827 @default.
- W3198673929 cites W2603913268 @default.
- W3198673929 cites W2753662284 @default.
- W3198673929 cites W2774327130 @default.
- W3198673929 cites W2789526630 @default.
- W3198673929 cites W2789876780 @default.
- W3198673929 cites W2886190064 @default.
- W3198673929 cites W2889986850 @default.
- W3198673929 cites W2907669480 @default.
- W3198673929 cites W2944011048 @default.
- W3198673929 cites W2953053221 @default.
- W3198673929 cites W2962139550 @default.
- W3198673929 cites W2963073614 @default.
- W3198673929 cites W2963163163 @default.
- W3198673929 cites W2963173533 @default.
- W3198673929 cites W2963580633 @default.
- W3198673929 cites W2963807552 @default.
- W3198673929 cites W2964024144 @default.
- W3198673929 cites W2965786352 @default.
- W3198673929 cites W2971699274 @default.
- W3198673929 cites W2972352850 @default.
- W3198673929 cites W2981914352 @default.
- W3198673929 cites W2994285294 @default.
- W3198673929 cites W3005000098 @default.
- W3198673929 cites W3025821991 @default.
- W3198673929 cites W3026642765 @default.
- W3198673929 cites W3047371674 @default.
- W3198673929 cites W3096831136 @default.
- W3198673929 cites W4292671739 @default.
- W3198673929 cites W632068949 @default.
- W3198673929 doi "https://doi.org/10.1021/acsami.1c12945" @default.
- W3198673929 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34469098" @default.
- W3198673929 hasPublicationYear "2021" @default.
- W3198673929 type Work @default.
- W3198673929 sameAs 3198673929 @default.
- W3198673929 citedByCount "5" @default.
- W3198673929 countsByYear W31986739292022 @default.
- W3198673929 countsByYear W31986739292023 @default.
- W3198673929 crossrefType "journal-article" @default.
- W3198673929 hasAuthorship W3198673929A5007948807 @default.
- W3198673929 hasAuthorship W3198673929A5010738468 @default.
- W3198673929 hasAuthorship W3198673929A5039374096 @default.
- W3198673929 hasAuthorship W3198673929A5054067619 @default.
- W3198673929 hasAuthorship W3198673929A5067736547 @default.
- W3198673929 hasAuthorship W3198673929A5080268249 @default.
- W3198673929 hasAuthorship W3198673929A5084702152 @default.
- W3198673929 hasConcept C100082104 @default.
- W3198673929 hasConcept C159985019 @default.
- W3198673929 hasConcept C192562407 @default.
- W3198673929 hasConcept C41008148 @default.
- W3198673929 hasConcept C87976508 @default.
- W3198673929 hasConceptScore W3198673929C100082104 @default.
- W3198673929 hasConceptScore W3198673929C159985019 @default.
- W3198673929 hasConceptScore W3198673929C192562407 @default.
- W3198673929 hasConceptScore W3198673929C41008148 @default.
- W3198673929 hasConceptScore W3198673929C87976508 @default.
- W3198673929 hasFunder F4320337391 @default.