Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198692895> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3198692895 endingPage "121715" @default.
- W3198692895 startingPage "121698" @default.
- W3198692895 abstract "Weeds affects crops health as it shares water and nutrients from the soil, as a result it decreases crop yield. Manual weedicide spray through bag-pack is hazardous to human health. Localized autonomous weedicide spray through aerial spraying units can help save water, weedicide chemical and effect less on human health. Such systems require multi-spectral cues to classify crop, weed, and soil surface. Our focus in this paper is on the detection of weeds in the sugar beet crop, using air-borne multispectral camera sensors, which is considered as an alternative crop to sugarcane to obtain sugar in Pakistan. We developed a new framework for weed identification; a patch-based classification approach as appose to semantic segmentation that is more realistic for real-time intelligent aerial spraying systems. Our approach converts 3-class pixel classification problem into a 2-class crop-weed patch classification problem which in turns improves crop and weed classification accuracy. For classification, we developed a new VGG-Beet convolutional neural network (CNN), which is based on generic CNN (VGG16) model with 11 convolutional layers. For experiments, we captured a sugar beet dataset with 3-channel multispectral sensor with a ground sampling distance (GSD) of 0.2 cm/pixel and a height of 4 meters. For better comparison, we used two publicly available sugar beet crop aerial imagery datasets, captured using a 5-channel multispectral sensor and a 4-Channel multispectral sensor with a ground sampling distance of 1cm and a height of 10 meters. We observed that patch-based method is more robust to different lighting conditions. To produce low cost weed detection system usage of Agrocam sensor is recommended, for higher accuracy Red Edge and Sequoia multispectral sensors with more channels should be deployed. We observed higher crop-weed accuracy and lower testing time for our patch-based approach as compared to state-of-the-art UNet and Deeplab semantic segmentation networks." @default.
- W3198692895 created "2021-09-13" @default.
- W3198692895 creator A5014145055 @default.
- W3198692895 creator A5017247129 @default.
- W3198692895 creator A5023209744 @default.
- W3198692895 creator A5035541390 @default.
- W3198692895 creator A5046441443 @default.
- W3198692895 creator A5069000246 @default.
- W3198692895 creator A5071160585 @default.
- W3198692895 creator A5085993924 @default.
- W3198692895 date "2021-01-01" @default.
- W3198692895 modified "2023-10-16" @default.
- W3198692895 title "A Patch-Image Based Classification Approach for Detection of Weeds in Sugar Beet Crop" @default.
- W3198692895 cites W1980148204 @default.
- W3198692895 cites W2394911398 @default.
- W3198692895 cites W2395611524 @default.
- W3198692895 cites W2412782625 @default.
- W3198692895 cites W2586062600 @default.
- W3198692895 cites W2586608994 @default.
- W3198692895 cites W2598666589 @default.
- W3198692895 cites W2743449486 @default.
- W3198692895 cites W2767767563 @default.
- W3198692895 cites W2886554959 @default.
- W3198692895 cites W2926464840 @default.
- W3198692895 cites W2962782553 @default.
- W3198692895 cites W2963881378 @default.
- W3198692895 doi "https://doi.org/10.1109/access.2021.3109015" @default.
- W3198692895 hasPublicationYear "2021" @default.
- W3198692895 type Work @default.
- W3198692895 sameAs 3198692895 @default.
- W3198692895 citedByCount "11" @default.
- W3198692895 countsByYear W31986928952022 @default.
- W3198692895 countsByYear W31986928952023 @default.
- W3198692895 crossrefType "journal-article" @default.
- W3198692895 hasAuthorship W3198692895A5014145055 @default.
- W3198692895 hasAuthorship W3198692895A5017247129 @default.
- W3198692895 hasAuthorship W3198692895A5023209744 @default.
- W3198692895 hasAuthorship W3198692895A5035541390 @default.
- W3198692895 hasAuthorship W3198692895A5046441443 @default.
- W3198692895 hasAuthorship W3198692895A5069000246 @default.
- W3198692895 hasAuthorship W3198692895A5071160585 @default.
- W3198692895 hasAuthorship W3198692895A5085993924 @default.
- W3198692895 hasBestOaLocation W31986928951 @default.
- W3198692895 hasConcept C115961682 @default.
- W3198692895 hasConcept C154945302 @default.
- W3198692895 hasConcept C160633673 @default.
- W3198692895 hasConcept C173163844 @default.
- W3198692895 hasConcept C205649164 @default.
- W3198692895 hasConcept C2775891814 @default.
- W3198692895 hasConcept C2776936025 @default.
- W3198692895 hasConcept C39432304 @default.
- W3198692895 hasConcept C41008148 @default.
- W3198692895 hasConcept C62649853 @default.
- W3198692895 hasConcept C6557445 @default.
- W3198692895 hasConcept C75294576 @default.
- W3198692895 hasConcept C81363708 @default.
- W3198692895 hasConcept C86803240 @default.
- W3198692895 hasConceptScore W3198692895C115961682 @default.
- W3198692895 hasConceptScore W3198692895C154945302 @default.
- W3198692895 hasConceptScore W3198692895C160633673 @default.
- W3198692895 hasConceptScore W3198692895C173163844 @default.
- W3198692895 hasConceptScore W3198692895C205649164 @default.
- W3198692895 hasConceptScore W3198692895C2775891814 @default.
- W3198692895 hasConceptScore W3198692895C2776936025 @default.
- W3198692895 hasConceptScore W3198692895C39432304 @default.
- W3198692895 hasConceptScore W3198692895C41008148 @default.
- W3198692895 hasConceptScore W3198692895C62649853 @default.
- W3198692895 hasConceptScore W3198692895C6557445 @default.
- W3198692895 hasConceptScore W3198692895C75294576 @default.
- W3198692895 hasConceptScore W3198692895C81363708 @default.
- W3198692895 hasConceptScore W3198692895C86803240 @default.
- W3198692895 hasLocation W31986928951 @default.
- W3198692895 hasOpenAccess W3198692895 @default.
- W3198692895 hasPrimaryLocation W31986928951 @default.
- W3198692895 hasRelatedWork W1994063300 @default.
- W3198692895 hasRelatedWork W2085994657 @default.
- W3198692895 hasRelatedWork W2285788670 @default.
- W3198692895 hasRelatedWork W2600925080 @default.
- W3198692895 hasRelatedWork W2766604260 @default.
- W3198692895 hasRelatedWork W2913784881 @default.
- W3198692895 hasRelatedWork W2986507176 @default.
- W3198692895 hasRelatedWork W3012393889 @default.
- W3198692895 hasRelatedWork W3024768525 @default.
- W3198692895 hasRelatedWork W4294605335 @default.
- W3198692895 hasVolume "9" @default.
- W3198692895 isParatext "false" @default.
- W3198692895 isRetracted "false" @default.
- W3198692895 magId "3198692895" @default.
- W3198692895 workType "article" @default.