Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198736895> ?p ?o ?g. }
- W3198736895 endingPage "3130" @default.
- W3198736895 startingPage "3114" @default.
- W3198736895 abstract "•Carboxyl group as the primary active site for H2O2 electrosynthesis•Graphitic carbon edges as doping sites for the active functional groups•Record-high H2O2 electrosynthesis activity among the reported carbon catalysts•Excellent long-term stability over 168 h and near-unity H2O2 faradic efficiency Electrosynthesis has emerged as a promising alternative to the traditional chemical synthesis processes. The major benefit of the electrochemical process includes the use of ambient pressure, low-temperature operating conditions, and high product selectivity. Hydrogen peroxide electrosynthesis is particularly attractive because of the use of practically limitless and clean source of reagents—air and water. The efficiency of this technology critically relies on the active catalyst for the selective reduction of O2 to H2O2. The activity and selectivity of electrocatalysts are largely affected by the nature of the active sites and catalyst structures. In this work, the active oxygen functional groups in O-doped carbons are identified via systematic investigation using model catalysts and the insights into the key structural factor are provided. The best catalyst, optimized in this work, exhibits the record-high H2O2 electrosynthesis activity with near 100% of H2O2 faradic efficiency. The electrosynthesis of H2O2 via the 2e− oxygen reduction reaction (ORR) is an attractive method for the clean and continuous on-site production of H2O2, for which the development of active and selective electrocatalysts remains a significant challenge. Although carbon nanomaterials have demonstrated promising performance for H2O2 production, the lack of understanding of the active sites and key structural factors has impeded their development. In this work, we have prepared carbon-based model catalysts to investigate the active oxygen functional groups and structural factor. We have identified that the carboxyl group at the edge sites of graphitic carbons is the major active site for the 2e− ORR, and the carbonyl group is a secondary active site. The nanoporous carbon catalyst with abundant active edge sites and optimized structure exhibited the highest H2O2 electrosynthesis activity among the carbon-based catalysts reported to date and excellent long-term stability (168 h) with 99% H2O2 faradic efficiency. The electrosynthesis of H2O2 via the 2e− oxygen reduction reaction (ORR) is an attractive method for the clean and continuous on-site production of H2O2, for which the development of active and selective electrocatalysts remains a significant challenge. Although carbon nanomaterials have demonstrated promising performance for H2O2 production, the lack of understanding of the active sites and key structural factors has impeded their development. In this work, we have prepared carbon-based model catalysts to investigate the active oxygen functional groups and structural factor. We have identified that the carboxyl group at the edge sites of graphitic carbons is the major active site for the 2e− ORR, and the carbonyl group is a secondary active site. The nanoporous carbon catalyst with abundant active edge sites and optimized structure exhibited the highest H2O2 electrosynthesis activity among the carbon-based catalysts reported to date and excellent long-term stability (168 h) with 99% H2O2 faradic efficiency. IntroductionHydrogen peroxide (H2O2) is a key chemical that is widely used in areas such as pulp bleaching, food processing, and wastewater treatment. The global demand for H2O2 has gradually increased.1Imarc Market ResearchHydrogen peroxide market: global industry trends, share, size, growth, opportunity and forecast 2020–2025.2020https://www.imarcgroup.com/hydrogen-peroxide-technical-material-market-reportGoogle Scholar,2Reportlinker market research.Global hydrogen peroxide industry. Brooklyn, 2020https://www.reportlinker.com/p090603/World-Hydrogen-Peroxide-Market.htmlGoogle Scholar Most of this demand has been fulfilled using the anthraquinone process. However, this process requires pressurized H2 gas and Pd-based hydrogenation catalysts and involves energy-intensive purification and distillation steps, which increase the production cost.3Campos-Martin J.M. Blanco-Brieva G. Fierro J.L. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process.Angew. Chem. Int. Ed. Engl. 2006; 45: 6962-6984Crossref PubMed Scopus (1477) Google Scholar,4Ciriminna R. Albanese L. Meneguzzo F. Pagliaro M. Hydrogen peroxide: a key chemical for today’s sustainable development.ChemSusChem. 2016; 9: 3374-3381Crossref PubMed Scopus (205) Google Scholar Furthermore, the centralized production infrastructure requires the large-scale manufacturing of concentrated H2O2, which imposes extra costs for transportation and the use of stabilizing agents, such as sodium pyrophosphate and metal chelating agents.3Campos-Martin J.M. Blanco-Brieva G. Fierro J.L. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process.Angew. Chem. Int. Ed. Engl. 2006; 45: 6962-6984Crossref PubMed Scopus (1477) Google Scholar, 4Ciriminna R. Albanese L. Meneguzzo F. Pagliaro M. Hydrogen peroxide: a key chemical for today’s sustainable development.ChemSusChem. 2016; 9: 3374-3381Crossref PubMed Scopus (205) Google Scholar, 5Wuorimaa A. Jokela R. Aksela R. Recent developments in the stabilization of hydrogen peroxide bleaching of pulps: an overview.Nord. Pulp Pap. Res. J. 2006; 21: 435-443Crossref Scopus (47) Google Scholar In this respect, the electrochemical production of H2O2 via the 2-electron oxygen reduction reaction (2e− ORR) has emerged as an attractive alternative that enables the small-scale and continuous on-site production of H2O2 in an environmentally benign manner. Moreover, its integration with renewable energy sources can significantly reduce the production cost. However, one of the major challenges in H2O2 electrosynthesis is the development of active and selective catalysts for the 2e− ORR, which competes with the 4e− ORR, further reduction of H2O2, and H2O2 chemical disproportionation reaction, where all these side reactions produce water.6Yang S. Verdaguer-Casadevall A. Arnarson L. Silvioli L. Čolić V. Frydendal R. et al.Toward the decentralized electrochemical production of H2O2: a focus on the catalyisis.ACS Catal. 2018; 8: 4064-4081Crossref Scopus (385) Google Scholar, 7Jiang Y. Ni P. Chen C. Lu Y. Yang P. Kong B. et al.Selective electrochemical H2O2 production through two-electron oxygen electrochemistry.Adv. Energy Mater. 2018; 8: 1801909Crossref Scopus (301) Google Scholar, 8Perry S.C. Pangotra D. Vieira L. Csepei L.-I. Sieber V. Wang L. Ponce de León C.P. Walsh F.C. Electrochemical synthesis of hydrogen peroxide from water and oxygen.Nat. Rev. Chem. 2019; 3: 442-458Crossref Scopus (267) Google Scholar, 9Melchionna M. Fornasiero P. Prato M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions.Adv. Mater. 2019; 31: e1802920Crossref PubMed Scopus (151) Google Scholar, 10Kim J.H. Kim Y.-T. Joo S.H. Electrocatalyst design for promoting two-electron oxygen reduction reaction: isolation of active site atoms.Curr. Opin. Electrochem. 2020; 21: 109-116Crossref Scopus (24) Google Scholar, 11Siahrostami S. Villegas S.J. Bagherzadeh Mostaghimi A.H.B. Back S. Farimani A.B. Wang H. Persson K.A. Montoya J. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide.ACS Catal. 2020; 10: 7495-7511Crossref Scopus (112) Google Scholar, 12Jiang K. Zhao J. Wang H. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide.Adv. Funct. Mater. 2020; 30: 2003321Crossref Scopus (80) Google Scholar, 13Jung E. Shin H. Hooch Antink W.H. Sung Y.-E. Hyeon T. Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design.ACS Energy Lett. 2020; 5: 1881-1892Crossref Scopus (87) Google Scholar, 14Sun K. Xu W. Lin X. Tian S. Lin W.-F. Zhou D. Sun X. Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts.Adv. Mater. Interfaces. 2021; 8: 2001360Crossref Scopus (23) Google Scholar, 15Gao J. Liu B. Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts.ACS Materials Lett. 2020; 2: 1008-1024Crossref Scopus (56) Google ScholarVarious classes of electrocatalysts have been investigated for selective H2O2 electrosynthesis, including precious metal catalysts containing single elements (Ag and Au),16Jirkovský J.S. Halasa M. Schiffrin D.J. Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles.Phys. Chem. Chem. Phys. 2010; 12: 8042-8052Crossref PubMed Scopus (102) Google Scholar,17Lu Y. Chen W. Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction.J. Power Sources. 2012; 197: 107-110Crossref Scopus (151) Google Scholar alloys (Pt–Hg, Pd–Hg, and Pd–Au),18Jirkovský J.S. Panas I. Ahlberg E. Halasa M. Romani S. Schiffrin D.J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production.J. Am. Chem. Soc. 2011; 133: 19432-19441Crossref PubMed Scopus (440) Google Scholar, 19Siahrostami S. Verdaguer-Casadevall A. Karamad M. Deiana D. Malacrida P. Wickman B. et al.Enabling direct H2O2 production through rational electrocatalyst design.Nat. Mater. 2013; 12: 1137-1143Crossref PubMed Scopus (675) Google Scholar, 20Verdaguer-Casadevall A. Deiana D. Karamad M. Siahrostami S. Malacrida P. Hansen T.W. et al.Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering.Nano Lett. 2014; 14: 1603-1608Crossref PubMed Scopus (367) Google Scholar and their atomically dispersed forms (Os, Ir, Rh, Ru, Pt, and Pd),21Choi C.H. Kim M. Kwon H.C. Cho S.J. Yun S. Kim H.T. Mayrhofer K.J.J. Kim H. Choi M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst.Nat. Commun. 2016; 7: 10922Crossref PubMed Scopus (524) Google Scholar, 22Yang S. Kim J. Tak Y.J. Soon A. Lee H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions.Angew. Chem. Int. Ed. Engl. 2016; 55: 2058-2062Crossref PubMed Scopus (563) Google Scholar, 23Shen R. Chen W. Peng Q. Lu S. Zheng L. Cao X. et al.High-concentration single atomic Pt sites on Hollow CuSx for selective O2 reduction to H2O2 in acid solution.Chem. 2019; 5: 2099-2110Abstract Full Text Full Text PDF Google Scholar, 24Kim J.H. Shin D. Lee J. Baek D.S. Shin T.J. Kim Y.T. Jeong H.Y. Kwak J.H. Kim H. Joo S.H. A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction.ACS Nano. 2020; 14: 1990-2001Crossref PubMed Scopus (61) Google Scholar as well as non-precious metal catalysts (Fe, Co, Ni, Mn, etc.).25Ko M. Pham L.T.M. Sa Y.J. Woo J. Nguyen T.V.T. Kim J.H. Oh D. Sharma P. Ryu J. Shin T.J. et al.Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell.Nat. Commun. 2019; 10: 5123Crossref PubMed Scopus (32) Google Scholar, 26Sun Y. Silvioli L. Sahraie N.R. Ju W. Li J. Zitolo A. Li S. Bagger A. Arnarson L. Wang X. et al.Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts.J. Am. Chem. Soc. 2019; 141: 12372-12381Crossref PubMed Scopus (270) Google Scholar, 27Jiang K. Back S. Akey A.J. Xia C. Hu Y. Liang W. Schaak D. Stavitski E. Nørskov J.K. Siahrostami S. Wang H. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination.Nat. Commun. 2019; 10: 3997Crossref PubMed Scopus (301) Google Scholar, 28Jung E. Shin H. Lee B.-H. Efremov V. Lee S. Lee H.S. et al.Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production.Nat. Mater. 2020; 19: 436-442Crossref PubMed Scopus (350) Google Scholar, 29Gao J. Yang H.B. Huang X. Hung S.-F. Cai W. Jia C. et al.Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst.Chem. 2020; 6: 658-674Abstract Full Text Full Text PDF Scopus (216) Google Scholar, 30Tang C. Jiao Y. Shi B. Liu J.N. Xie Z. Chen X. Zhang Q. Qiao S.Z. Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts.Angew. Chem. Int. Ed. Engl. 2020; 59: 9171-9176Crossref PubMed Scopus (221) Google Scholar, 31Yang Q. Xu W. Gong S. Zheng G. Tian Z. Wen Y. Peng L. Zhang L. Lu Z. Chen L. Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts.Nat. Commun. 2020; 11: 5478Crossref PubMed Scopus (47) Google Scholar, 32Gao R. Pan L. Li Z. Shi C. Yao Y. Zhang X. et al.Engineering facets and oxygen vacancies over hematite single crystal for intensified electrocatalytic H2O2 production.Adv. Funct. Mater. 2020; 30: 1910539Crossref Scopus (45) Google Scholar, 33Sheng H. Hermes E.D. Yang X. Ying D. Janes A.N. Li W. et al.Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2).ACS Catal. 2019; 9: 8433-8442Crossref Scopus (83) Google Scholar, 34Ma F. Wang S. Liang X. Wang C. Tong F. Wang Z. et al.Ni3B as a highly efficient and selective catalyst for the electrosynthesis of hydrogen peroxide.Appl. Catal. B. 2020; 279: 119371Crossref Scopus (30) Google Scholar However, metallic species are relatively susceptible to leaching or degradation in an aqueous electrolyte under conventional operating conditions, which can potentially catalyze the decomposition of H2O2. Metal-free carbon nanomaterials have emerged as promising electrocatalysts for the 2e− ORR because of their high activity, abundance, and low cost. Because pristine carbons exhibit mediocre activity, the electrocatalytic performance has to be improved by tuning the surface properties of carbon materials. Doping heteroatoms (B, N, O, S, and F) is an effective way to enhance the activity and selectivity of carbon materials toward 2e− ORR.35Fellinger T.P. Hasché F. Strasser P. Antonietti M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide.J. Am. Chem. Soc. 2012; 134: 4072-4075Crossref PubMed Scopus (518) Google Scholar, 36Park J. Nabae Y. Hayakawa T. Kakimoto M. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon.ACS Catal. 2014; 4: 3749-3754Crossref Scopus (276) Google Scholar, 37Chen Z. Chen S. Siahrostami S. Chakthranont P. Hahn C. Nordlund D. et al.Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2.React. Chem. Eng. 2017; 2: 239-245Crossref Google Scholar, 38Roldán L. Truong-Phuoc L. Ansón-Casaos A. Pham-Huu C. García-Bordejé E. Mesoporous carbon doped with N, S heteroatoms prepared by one-pot auto-assembly of molecular precursor for electrocatalytic hydrogen peroxide synthesis.Catal. Today. 2018; 301: 2-10Crossref Scopus (31) Google Scholar, 39Kim H.W. Ross M.B. Kornienko N. Zhang L. Guo J. Yang P. McCloskey B.D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts.Nat. Catal. 2018; 1: 282-290Crossref Scopus (434) Google Scholar, 40Iglesias D. Giuliani A. Melchionna M. Marchesan S. Criado A. Nasi L. et al.N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2.Chem. 2018; 4: 106-123Abstract Full Text Full Text PDF Scopus (230) Google Scholar, 41Chen S. Chen Z. Siahrostami S. Higgins D. Nordlund D. Sokaras D. Kim T.R. Liu Y. Yan X. Nilsson E. et al.Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide.J. Am. Chem. Soc. 2018; 140: 7851-7859Crossref PubMed Scopus (207) Google Scholar, 42Lu Z. Chen G. Siahrostami S. Chen Z. Liu K. Xie J. Liao L. Wu T. Lin D. Liu Y. et al.High-efficiency oxygen reduction to hydrogen peroxide catalyzed by oxidized carbon materials.Nat. Catal. 2018; 1: 156-162Crossref Scopus (707) Google Scholar, 43Zhao K. Su Y. Quan X. Liu Y. Chen S. Yu H. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon.J. Catal. 2018; 357: 118-126Crossref Scopus (161) Google Scholar, 44Sun Y. Sinev I. Ju W. Bergmann A. Dresp S. Kühl S. Spöri C. Schmies H. Wang H. Bernsmeier D. et al.Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts.ACS Catal. 2018; 8: 2844-2856Crossref Scopus (244) Google Scholar, 45Sa Y.J. Kim J.H. Joo S.H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production.Angew. Chem. Int. Ed. Engl. 2019; 58: 1100-1105Crossref PubMed Scopus (141) Google Scholar, 46Han L. Sun Y. Li S. Cheng C. Halbig C.E. Feicht P. Hübner J.L. Strasser P. Eigler S. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene.ACS Catal. 2019; 9: 1283-1288Crossref Scopus (144) Google Scholar, 47Kim H.W. Park H. Roh J.S. Shin J.E. Lee T.H. Zhang L. Cho Y.H. Yoon H.W. Bukas V.J. Guo J. et al.Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction.Chem. Mater. 2019; 31: 3967-3973Crossref Scopus (63) Google Scholar, 48Kim H.W. Bukas V.J. Park H. Park S. Diederichsen K.M. Lim J. Cho Y.H. Kim J. Kim W. Han T.H. et al.Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide.ACS Catal. 2020; 10: 852-863Crossref Scopus (99) Google Scholar, 49Jia N. Yang T. Shi S. Chen X. An Z. Chen Y. Yin S. Chen P. N, F-codoped carbon nanocages: an efficient electrocatalysts for hydrogen peroxide electroproduction in alkaline and acidic solution.ACS Sustainable Chem. Eng. 2020; 8: 2883-2891Crossref Scopus (40) Google Scholar, 50Han G.F. Li F. Zou W. Karamad M. Jeon J.P. Kim S.W. et al.Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2.Nat. Commun. 2020; 11: 2209Crossref PubMed Scopus (126) Google Scholar, 51Wu K.-H. Wang D. Lu X. Zhang X. Xie Z. Liu Y. Su B.-J. Chen J.-M. Su D.-S. Qi W. Guo S. Highly selective hydrogen peroxide electrosynthesis on carbon: in situ interface engineering with surfactants.Chem. 2020; 6: 1443-1458Abstract Full Text Full Text PDF Scopus (65) Google Scholar, 52Fernandez-Escamilla H.N. Guerrero-Sanchez J. Contreras E. Ruiz-Marizcal J.M. Alonso-Nunez G. Contreras O.E. Felix-Navarro R.M. Romo-Herrera J.M. Takeuchi N. Understanding the selectivity of the oxygen reduction reaction at the atomistic level on nitrogen-doped graphitic carbon materials.Adv. Energy Mater. 2021; 11: 2002459Crossref Scopus (33) Google Scholar, 53Pang Y. Wang K. Xie H. Sun Y. Titirici M.-M. Chai G.-L. Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes.ACS Catal. 2020; 10: 7434-7442Crossref Scopus (59) Google Scholar, 54Li L. Tang C. Zheng Y. Xia B. Zhou X. Xu H. Qiao S.-Z. Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon.Adv. Energy Mater. 2020; 10: 2000789Crossref Scopus (152) Google Scholar, 55San Roman D.S. Krishnamurthy D. Garg R. Hafiz H. Lamparski M. Nuhfer N.T. Meunier V. Viswanathan V. Cohen-Karni T. Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis.ACS Catal. 2020; 10: 1993-2008Crossref Scopus (57) Google Scholar, 56Chen S. Chen Z. Siahrostami S. Kim T.R. Nordlund D. Sokaras D. Nowak S. To J.W.F. Higgins D. Sinclair R. et al.Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide.ACS Sustainable Chem. Eng. 2018; 6: 311-317Crossref Scopus (178) Google Scholar, 57Liu Y. Quan X. Fan X. Wang H. Chen S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon.Angew. Chem. Int. Ed. Engl. 2015; 54: 6837-6841Crossref PubMed Scopus (326) Google Scholar, 58Hasanzadeh A. Khataee A. Zarei M. Zhang Y. Two-electron oxygen reduction on fullerene C60-carbon nanotubes covalent hybrid as a metal-free electrocatalysts.Sci. Rep. 2019; 9: 13780Crossref PubMed Scopus (22) Google Scholar Among the explored dopants, oxygen is particularly efficient for the 2e− ORR, yet the detailed chemical states of the active oxygen functional groups remain elusive. This is because O-doping processes usually create a variety of surface oxygen functional groups, whose type and relative distribution are generally uncontrollable. Therefore, diverse oxygen functional groups, including ether (C–O–C),39Kim H.W. Ross M.B. Kornienko N. Zhang L. Guo J. Yang P. McCloskey B.D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts.Nat. Catal. 2018; 1: 282-290Crossref Scopus (434) Google Scholar,42Lu Z. Chen G. Siahrostami S. Chen Z. Liu K. Xie J. Liao L. Wu T. Lin D. Liu Y. et al.High-efficiency oxygen reduction to hydrogen peroxide catalyzed by oxidized carbon materials.Nat. Catal. 2018; 1: 156-162Crossref Scopus (707) Google Scholar,47Kim H.W. Park H. Roh J.S. Shin J.E. Lee T.H. Zhang L. Cho Y.H. Yoon H.W. Bukas V.J. Guo J. et al.Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction.Chem. Mater. 2019; 31: 3967-3973Crossref Scopus (63) Google Scholar epoxy,39Kim H.W. Ross M.B. Kornienko N. Zhang L. Guo J. Yang P. McCloskey B.D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts.Nat. Catal. 2018; 1: 282-290Crossref Scopus (434) Google Scholar,47Kim H.W. Park H. Roh J.S. Shin J.E. Lee T.H. Zhang L. Cho Y.H. Yoon H.W. Bukas V.J. Guo J. et al.Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction.Chem. Mater. 2019; 31: 3967-3973Crossref Scopus (63) Google Scholar carbonyl/quinone (C=O),50Han G.F. Li F. Zou W. Karamad M. Jeon J.P. Kim S.W. et al.Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2.Nat. Commun. 2020; 11: 2209Crossref PubMed Scopus (126) Google Scholar,51Wu K.-H. Wang D. Lu X. Zhang X. Xie Z. Liu Y. Su B.-J. Chen J.-M. Su D.-S. Qi W. Guo S. Highly selective hydrogen peroxide electrosynthesis on carbon: in situ interface engineering with surfactants.Chem. 2020; 6: 1443-1458Abstract Full Text Full Text PDF Scopus (65) Google Scholar and carboxyl (O–C=O),42Lu Z. Chen G. Siahrostami S. Chen Z. Liu K. Xie J. Liao L. Wu T. Lin D. Liu Y. et al.High-efficiency oxygen reduction to hydrogen peroxide catalyzed by oxidized carbon materials.Nat. Catal. 2018; 1: 156-162Crossref Scopus (707) Google Scholar,51Wu K.-H. Wang D. Lu X. Zhang X. Xie Z. Liu Y. Su B.-J. Chen J.-M. Su D.-S. Qi W. Guo S. Highly selective hydrogen peroxide electrosynthesis on carbon: in situ interface engineering with surfactants.Chem. 2020; 6: 1443-1458Abstract Full Text Full Text PDF Scopus (65) Google Scholar have been proposed as the active sites in previous studies.In addition, the structural properties of carbon-based materials play a substantial role on nanostructured electrocatalysts. The structural properties, including pore structure35Fellinger T.P. Hasché F. Strasser P. Antonietti M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide.J. Am. Chem. Soc. 2012; 134: 4072-4075Crossref PubMed Scopus (518) Google Scholar, 36Park J. Nabae Y. Hayakawa T. Kakimoto M. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon.ACS Catal. 2014; 4: 3749-3754Crossref Scopus (276) Google Scholar, 37Chen Z. Chen S. Siahrostami S. Chakthranont P. Hahn C. Nordlund D. et al.Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2.React. Chem. Eng. 2017; 2: 239-245Crossref Google Scholar,43Zhao K. Su Y. Quan X. Liu Y. Chen S. Yu H. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon.J. Catal. 2018; 357: 118-126Crossref Scopus (161) Google Scholar,44Sun Y. Sinev I. Ju W. Bergmann A. Dresp S. Kühl S. Spöri C. Schmies H. Wang H. Bernsmeier D. et al.Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts.ACS Catal. 2018; 8: 2844-2856Crossref Scopus (244) Google Scholar,53Pang Y. Wang K. Xie H. Sun Y. Titirici M.-M. Chai G.-L. Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes.ACS Catal. 2020; 10: 7434-7442Crossref Scopus (59) Google Scholar,55San Roman D.S. Krishnamurthy D. Garg R. Hafiz H. Lamparski M. Nuhfer N.T. Meunier V. Viswanathan V. Cohen-Karni T. Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis.ACS Catal. 2020; 10: 1993-2008Crossref Scopus (57) Google Scholar and surface area,44Sun Y. Sinev I. Ju W. Bergmann A. Dresp S. Kühl S. Spöri C. Schmies H. Wang H. Bernsmeier D. et al.Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts.ACS Catal. 2018; 8: 2844-2856Crossref Scopus (244) Google Scholar,53Pang Y. Wang K. Xie H. Sun Y. Titirici M.-M. Chai G.-L. Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes.ACS Catal. 2020; 10: 7434-7442Crossref Scopus (59) Google Scholar,56Chen S. Chen Z. Siahrostami S. Kim T.R. Nordlund D. Sokaras D. Nowak S. To J.W.F. Higgins D. Sinclair R. et al.Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide.ACS Sustainable Chem. Eng. 2018; 6: 311-317Crossref Scopus (178) Google Scholar are closely linked to the mass transport and the utilization of the active sites on the catalyst surfaces. Moreover, nanostructuring itself contributes to the creation of high-curvature surfaces and vacancies that generally contain abundant defect sites, such as sp3 carbons, graphitic edges,45Sa Y.J. Kim J.H. Joo S.H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production.Angew. Chem. Int. Ed. Engl. 2019; 58: 1100-1105Crossref PubMed Scopus (141) Google Scholar,55San Roman D.S. Krishnamurthy D. Garg R. Hafiz H. Lamparski M. Nuhfer N.T. Meunier V. Viswanathan V. Cohen-Karni T. Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis.ACS Catal. 2020; 10: 1993-2008Crossref Scopus (57) Google Scholar and other defects,46Han L. Sun Y. Li S. Cheng C. Halbig C.E. Feicht P. Hübner J.L. Strasser P. Eigler S. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene.ACS Catal. 2019; 9: 1283-1288Crossref Scopus (144) Google Scholar,47Kim H.W. Park H. Roh J.S. Shin J.E. Lee T.H. Zhang L. Cho Y.H. Yoon H.W. Bukas V.J. Guo J. et al.Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction.Chem. Mater. 2019; 31: 3967-3973Crossref Scopus (63) Google Scholar,58Hasanzadeh A. Khataee A. Zarei M. Zhang Y. Two-electron oxygen reduction on fullerene C60-carbon nanotubes covalent hybrid as a metal-free electrocatalysts.Sci. Rep. 2019; 9: 13780Crossref PubMed Scopus (22) Google Scholar which have demonstrated high activity in the 2e− ORR. Both the nature and number of active species and the structural properties of the catalyst can simultaneously govern the electrocatalytic activity in a complex manner. Model catalysts that have controlled active sites with other structural features fixed (or vice versa) are important for revealing the key factors for activity. However, it is challenging to selectively modify either the active species or structural properties because they are strongly related to each other. For example, O-doping of carbon materials can generate pores and vacancies as well as oxygen functional groups.This paper describes a systematic study conducted to identify the catalytically active oxygen functional groups in O-doped carbon materials, understand the key structural factor, and optimize the structure to maximize the activity in H2O2 electrosynthesis. For this purpose, graphitic ordered mesoporous carbon (GOMC) model catalysts were prepared with controlled oxygen functionalities, while the other structural properties were fixed. The tuned surface oxygen functional groups were analyzed using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectroscopy, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, electrochemical pseudo-capacitive studies, and selective blocking of oxygen functional groups. The relationship between the surface functionality and 2e− ORR activity establishes that the carboxyl and carbonyl groups are the active sites with the carboxyl group exerting higher activity. We also identified the key structural factor using a second series of model catalysts containing a similar distribution of active species with tuned density of edge carbon sites. We observed a linear relationship between the edge carbon density and H2O2 electrosynthesis activity. Through active site identification and optimization of the catalyst structure, the optimum catalyst (O-GOMC-5.5) was obtained, which exhibited a high H2O2 faradic efficiency (FE) of 99% and" @default.
- W3198736895 created "2021-09-13" @default.
- W3198736895 creator A5030133810 @default.
- W3198736895 creator A5033055509 @default.
- W3198736895 creator A5059178058 @default.
- W3198736895 creator A5060011962 @default.
- W3198736895 creator A5064181215 @default.
- W3198736895 creator A5070836059 @default.
- W3198736895 creator A5075090081 @default.
- W3198736895 creator A5087341192 @default.
- W3198736895 date "2021-11-01" @default.
- W3198736895 modified "2023-10-16" @default.
- W3198736895 title "Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification" @default.
- W3198736895 cites W1971698505 @default.
- W3198736895 cites W1984648702 @default.
- W3198736895 cites W2006016146 @default.
- W3198736895 cites W2039527261 @default.
- W3198736895 cites W2040737196 @default.
- W3198736895 cites W2043172261 @default.
- W3198736895 cites W2052246714 @default.
- W3198736895 cites W2061367556 @default.
- W3198736895 cites W2080475618 @default.
- W3198736895 cites W2087207644 @default.
- W3198736895 cites W2097089901 @default.
- W3198736895 cites W2110534188 @default.
- W3198736895 cites W2121180786 @default.
- W3198736895 cites W2156948146 @default.
- W3198736895 cites W2197330948 @default.
- W3198736895 cites W2297872481 @default.
- W3198736895 cites W2548467537 @default.
- W3198736895 cites W2563531284 @default.
- W3198736895 cites W2591627545 @default.
- W3198736895 cites W2765517692 @default.
- W3198736895 cites W2769855742 @default.
- W3198736895 cites W2771377027 @default.
- W3198736895 cites W2782723324 @default.
- W3198736895 cites W2787972732 @default.
- W3198736895 cites W2795272585 @default.
- W3198736895 cites W2795293472 @default.
- W3198736895 cites W2805559882 @default.
- W3198736895 cites W2885206286 @default.
- W3198736895 cites W2891982331 @default.
- W3198736895 cites W2905079305 @default.
- W3198736895 cites W2907839920 @default.
- W3198736895 cites W2935793989 @default.
- W3198736895 cites W2946350727 @default.
- W3198736895 cites W2947010928 @default.
- W3198736895 cites W2951356883 @default.
- W3198736895 cites W2959489985 @default.
- W3198736895 cites W2963987813 @default.
- W3198736895 cites W2966736447 @default.
- W3198736895 cites W2971471509 @default.
- W3198736895 cites W2977156617 @default.
- W3198736895 cites W2987506717 @default.
- W3198736895 cites W2989788810 @default.
- W3198736895 cites W2995943508 @default.
- W3198736895 cites W2999090610 @default.
- W3198736895 cites W2999727704 @default.
- W3198736895 cites W3003732256 @default.
- W3198736895 cites W3003948617 @default.
- W3198736895 cites W3005028233 @default.
- W3198736895 cites W3012441403 @default.
- W3198736895 cites W3017316500 @default.
- W3198736895 cites W3017454980 @default.
- W3198736895 cites W3021189595 @default.
- W3198736895 cites W3022112003 @default.
- W3198736895 cites W3022855257 @default.
- W3198736895 cites W3034591340 @default.
- W3198736895 cites W3035509005 @default.
- W3198736895 cites W3036377937 @default.
- W3198736895 cites W3042156029 @default.
- W3198736895 cites W3045963706 @default.
- W3198736895 cites W3097391371 @default.
- W3198736895 cites W3101382561 @default.
- W3198736895 cites W3104029749 @default.
- W3198736895 cites W4238657609 @default.
- W3198736895 doi "https://doi.org/10.1016/j.chempr.2021.08.007" @default.
- W3198736895 hasPublicationYear "2021" @default.
- W3198736895 type Work @default.
- W3198736895 sameAs 3198736895 @default.
- W3198736895 citedByCount "89" @default.
- W3198736895 countsByYear W31987368952021 @default.
- W3198736895 countsByYear W31987368952022 @default.
- W3198736895 countsByYear W31987368952023 @default.
- W3198736895 crossrefType "journal-article" @default.
- W3198736895 hasAuthorship W3198736895A5030133810 @default.
- W3198736895 hasAuthorship W3198736895A5033055509 @default.
- W3198736895 hasAuthorship W3198736895A5059178058 @default.
- W3198736895 hasAuthorship W3198736895A5060011962 @default.
- W3198736895 hasAuthorship W3198736895A5064181215 @default.
- W3198736895 hasAuthorship W3198736895A5070836059 @default.
- W3198736895 hasAuthorship W3198736895A5075090081 @default.
- W3198736895 hasAuthorship W3198736895A5087341192 @default.
- W3198736895 hasBestOaLocation W31987368951 @default.
- W3198736895 hasConcept C104779481 @default.
- W3198736895 hasConcept C116834253 @default.
- W3198736895 hasConcept C139719470 @default.
- W3198736895 hasConcept C140205800 @default.