Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198740282> ?p ?o ?g. }
- W3198740282 endingPage "150130" @default.
- W3198740282 startingPage "150130" @default.
- W3198740282 abstract "Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the urban energy balance cycle and its implications for the Urban Heat Island (UHI) effect. Despite readily available, diurnal Land Surface Temperature (LST) data does not provide a meaningful picture of the UHI, in these midlatitudes FUAs. On the contrary, the mid-morning satellite overpass is characterized by the absence of a significant surface UHI (SUHI) signal, corresponding to the period of the day when the urban-rural air temperature difference is typically negative. Conversely, nocturnal high-resolution LST data is rarely available. In this study, an energy balance-based machine learning approach is explored, considering the Local Climate Zones (LCZ), to describe the daily cycle of the heat flux components and predict the nocturnal SUHI, during an HW event. While the urban and rural spatial outlines are not visible in the diurnal thermal image, they become apparent in the latent and storage heat flux maps – built-up infrastructures uptake heat during the day which is released back into the atmosphere, during the night, whereas vegetation land surfaces loose diurnal heat through evapotranspiration. For the LST prediction model, a random forest (RF) approach is implemented. RF results show that the model accurately predicts the LST, ensuring mean square errors inferior to 0.1 K. Both the latent and storage heat flux components, together with LCZ classification, are the most important explanatory variables for the nocturnal LST prediction, supporting the adoption of the energy balance approach. In future research, other locations and time-series data shall be trained and tested, providing an efficient local urban climate monitoring tool, where in-situ air temperature observations are not available." @default.
- W3198740282 created "2021-09-13" @default.
- W3198740282 creator A5040197161 @default.
- W3198740282 creator A5058236022 @default.
- W3198740282 creator A5067742793 @default.
- W3198740282 creator A5089968820 @default.
- W3198740282 date "2022-01-01" @default.
- W3198740282 modified "2023-10-18" @default.
- W3198740282 title "An urban energy balance-guided machine learning approach for synthetic nocturnal surface Urban Heat Island prediction: A heatwave event in Naples" @default.
- W3198740282 cites W1517195678 @default.
- W3198740282 cites W1975502977 @default.
- W3198740282 cites W1976044762 @default.
- W3198740282 cites W1990793870 @default.
- W3198740282 cites W1994262702 @default.
- W3198740282 cites W2007253632 @default.
- W3198740282 cites W2007384702 @default.
- W3198740282 cites W2023412238 @default.
- W3198740282 cites W2030208160 @default.
- W3198740282 cites W2030737358 @default.
- W3198740282 cites W2038774500 @default.
- W3198740282 cites W2049245993 @default.
- W3198740282 cites W2056765102 @default.
- W3198740282 cites W2065311277 @default.
- W3198740282 cites W2095555935 @default.
- W3198740282 cites W2101108516 @default.
- W3198740282 cites W2108360254 @default.
- W3198740282 cites W2114088936 @default.
- W3198740282 cites W2121296275 @default.
- W3198740282 cites W2122982975 @default.
- W3198740282 cites W2147332065 @default.
- W3198740282 cites W2156049446 @default.
- W3198740282 cites W2158719734 @default.
- W3198740282 cites W2261059368 @default.
- W3198740282 cites W2317405003 @default.
- W3198740282 cites W2370020776 @default.
- W3198740282 cites W2560347871 @default.
- W3198740282 cites W2579522048 @default.
- W3198740282 cites W2623639232 @default.
- W3198740282 cites W2727738022 @default.
- W3198740282 cites W2728636508 @default.
- W3198740282 cites W2781192025 @default.
- W3198740282 cites W2809005300 @default.
- W3198740282 cites W2882992963 @default.
- W3198740282 cites W2884402541 @default.
- W3198740282 cites W2887656736 @default.
- W3198740282 cites W2889124453 @default.
- W3198740282 cites W2911964244 @default.
- W3198740282 cites W2915308768 @default.
- W3198740282 cites W2941060156 @default.
- W3198740282 cites W2967513848 @default.
- W3198740282 cites W2979223163 @default.
- W3198740282 cites W3000483774 @default.
- W3198740282 cites W3024727387 @default.
- W3198740282 cites W3025081560 @default.
- W3198740282 cites W3033412851 @default.
- W3198740282 cites W3034086825 @default.
- W3198740282 cites W3034933863 @default.
- W3198740282 cites W3046627995 @default.
- W3198740282 cites W3085162306 @default.
- W3198740282 cites W3090277462 @default.
- W3198740282 cites W3107336082 @default.
- W3198740282 cites W3111322109 @default.
- W3198740282 cites W3115112955 @default.
- W3198740282 cites W3117308481 @default.
- W3198740282 cites W3118907400 @default.
- W3198740282 cites W3132769519 @default.
- W3198740282 cites W3153948677 @default.
- W3198740282 cites W3155993469 @default.
- W3198740282 cites W3157171530 @default.
- W3198740282 cites W3168301201 @default.
- W3198740282 cites W3173630105 @default.
- W3198740282 cites W3183303001 @default.
- W3198740282 cites W3185882843 @default.
- W3198740282 cites W805326927 @default.
- W3198740282 doi "https://doi.org/10.1016/j.scitotenv.2021.150130" @default.
- W3198740282 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34537713" @default.
- W3198740282 hasPublicationYear "2022" @default.
- W3198740282 type Work @default.
- W3198740282 sameAs 3198740282 @default.
- W3198740282 citedByCount "17" @default.
- W3198740282 countsByYear W31987402822021 @default.
- W3198740282 countsByYear W31987402822022 @default.
- W3198740282 countsByYear W31987402822023 @default.
- W3198740282 crossrefType "journal-article" @default.
- W3198740282 hasAuthorship W3198740282A5040197161 @default.
- W3198740282 hasAuthorship W3198740282A5058236022 @default.
- W3198740282 hasAuthorship W3198740282A5067742793 @default.
- W3198740282 hasAuthorship W3198740282A5089968820 @default.
- W3198740282 hasBestOaLocation W31987402821 @default.
- W3198740282 hasConcept C111368507 @default.
- W3198740282 hasConcept C121332964 @default.
- W3198740282 hasConcept C127313418 @default.
- W3198740282 hasConcept C1276947 @default.
- W3198740282 hasConcept C132651083 @default.
- W3198740282 hasConcept C153294291 @default.
- W3198740282 hasConcept C153385146 @default.
- W3198740282 hasConcept C158049464 @default.
- W3198740282 hasConcept C159188206 @default.