Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198755721> ?p ?o ?g. }
- W3198755721 abstract "With the rise of various renewable energy sources, comes the possibility for combining the different type of sources together to balance their shortcomings. The goal is to find a renewable energy system that can be reliable year-round and be accessible for everyone. This research tries to model such a system. A model of a grid-tied PV-battery-electrolyser-fuel cell power system, which is based on a continuation of a series of master thesis projects, was expanded to include a neighbourhood with a fully electrical load or a combination of electrical and hydrogen loads. This model was developed to answer the following question. What is the techno-economic feasibility of a grid-tied PV-battery-electrolyser-fuel cell power system for a household area in the Netherlands which is either fully electrical or hydrogen integrated? This hybrid system is simulated by using the graphical interface program TRNSYS. The system size of the PV, batteries, electrolyser, fuel cell and hydrogen gas storage tank are optimised by the GenOpt, an add-on for TRNSYS. The optimisation algorithm will try to find the lowest levelised cost of energy(LCOE) while keeping the system self-sufficiency ratio(SSR) around 1 [%]. This will mean that only 1 [%] of the load is allowed to be extracted from the grid. The simulation is based on a neighbourhood that consists of 630 houses located in Pijnacker Netherlands. All houses will be equipped with a roof mounted solar PV system with centralised batteries, electrolyser, fuel cell and a hydrogen storage tank. If needed the model can be extended to include a small solar park next to the neighbourhood. The model will simulate two scenarios for a simulation time of one year, the first being that the neighbourhood is fully electrical and the second for a neighbourhood with integrated hydrogen gas in its consumption. The first one is the base, with only the electrical load demand of houses. Then the load profile will be extended by adding vehicle to the neighbourhood, including the heat demand of the house. These additional load profiles will either be electrical energy based for the fully electrical scenario or hydrogen gas based for the integrated hydrogen scenario. To estimate the economic development of this hybrid system, a price projection of PV, battery, electrolyser, fuel cell, hydrogen heating, heat pumps and inverters components were determined for the years 2020, 2030, 2040 and 2050. a, the cases will all be simulated for these years. The economic analysis will be over the systems lifetime, which is 25 years. Before the cases were simulated the model undertook a sensitivity analysis. From this resulted that the simulation start time can be moved from the 1st of January to the 2nd of March to relief the storage tank of getting depleted at the start of the simulation. A battery discharge constraint was lifted and this led the batteries to provide more energy. A forecasting method was applied to the system that effectively reduced the electrolyser on/off cycles by 60 [%], which increased the lifetime of the electrolyser component. From a technical feasibility analysis of the cases, it resulted that the integrated hydrogen scenario was not technical feasible with the PV system (roof mounted with the PV park) of this model. All the integrated hydrogen scenario cases resulted in a depleted hydrogen storage tank, which forced the system to buy the hydrogen demand externally. The system will rely on an external source more than the allowed 1 [%] (hydrogen gas SSR >> 1 [%]) of the load demand. From the fully electrical scenario the 2020 C-E-(V+H) case resulted not be technical feasible with a SSR value of 2.1 [%]. All the other cases were technical feasible. From an economic and cost perspective, the cases resulted that the LCOE reduced with the years. The lowest LCOE value found was for the C-E-(Base) case, which reduced from 0.44 [€/KWh] in 2020 to 0.21[€/KWh] in 2050. The cost breakdown of the cases resulted in the PV system and the storage tank to be the most expensive components of this system. Due to the fact that the C-H2-(H) case had to buy a significant amount of hydrogen from an external source, this became a significant expensive cost of the system. Comparing the two scenarios resulted that the integrated hydrogen scenario system sizes were smaller, but this is an effect of the system being more eager to buy hydrogen gas then to expand the hydrogen production components. As both scenarios had different SSR values of their respected energy demands, a conclusion of which scenario is more beneficial will be inadequate." @default.
- W3198755721 created "2021-09-13" @default.
- W3198755721 creator A5071226900 @default.
- W3198755721 date "2021-01-01" @default.
- W3198755721 modified "2023-09-26" @default.
- W3198755721 title "A new look for residential hybrid systems: A PV-battery-electrolyser-fuel cell power system for a neighbourhood in the Netherlands" @default.
- W3198755721 cites W1518465986 @default.
- W3198755721 cites W1831575078 @default.
- W3198755721 cites W1991658890 @default.
- W3198755721 cites W2006721975 @default.
- W3198755721 cites W2075619750 @default.
- W3198755721 cites W2110420385 @default.
- W3198755721 cites W2140461260 @default.
- W3198755721 cites W2152607965 @default.
- W3198755721 cites W2152710595 @default.
- W3198755721 cites W2260194856 @default.
- W3198755721 cites W2336683285 @default.
- W3198755721 cites W2470859544 @default.
- W3198755721 cites W2543580944 @default.
- W3198755721 cites W2559288360 @default.
- W3198755721 cites W2604519671 @default.
- W3198755721 cites W2612156590 @default.
- W3198755721 cites W2620986155 @default.
- W3198755721 cites W2727165102 @default.
- W3198755721 cites W2769215390 @default.
- W3198755721 cites W2807745917 @default.
- W3198755721 cites W2912830670 @default.
- W3198755721 cites W2915666072 @default.
- W3198755721 cites W2923503378 @default.
- W3198755721 cites W2945578812 @default.
- W3198755721 cites W2947879750 @default.
- W3198755721 cites W2972260644 @default.
- W3198755721 cites W2974764047 @default.
- W3198755721 cites W3005669272 @default.
- W3198755721 cites W3007472167 @default.
- W3198755721 cites W3013515779 @default.
- W3198755721 cites W3015193642 @default.
- W3198755721 cites W3104470526 @default.
- W3198755721 cites W3118264629 @default.
- W3198755721 cites W3139470330 @default.
- W3198755721 cites W3142196569 @default.
- W3198755721 hasPublicationYear "2021" @default.
- W3198755721 type Work @default.
- W3198755721 sameAs 3198755721 @default.
- W3198755721 citedByCount "0" @default.
- W3198755721 crossrefType "journal-article" @default.
- W3198755721 hasAuthorship W3198755721A5071226900 @default.
- W3198755721 hasConcept C105795698 @default.
- W3198755721 hasConcept C119599485 @default.
- W3198755721 hasConcept C121332964 @default.
- W3198755721 hasConcept C127413603 @default.
- W3198755721 hasConcept C163258240 @default.
- W3198755721 hasConcept C171146098 @default.
- W3198755721 hasConcept C186370098 @default.
- W3198755721 hasConcept C187691185 @default.
- W3198755721 hasConcept C188573790 @default.
- W3198755721 hasConcept C2524010 @default.
- W3198755721 hasConcept C2778457487 @default.
- W3198755721 hasConcept C33923547 @default.
- W3198755721 hasConcept C39432304 @default.
- W3198755721 hasConcept C41008148 @default.
- W3198755721 hasConcept C41291067 @default.
- W3198755721 hasConcept C555008776 @default.
- W3198755721 hasConcept C62520636 @default.
- W3198755721 hasConcept C73916439 @default.
- W3198755721 hasConceptScore W3198755721C105795698 @default.
- W3198755721 hasConceptScore W3198755721C119599485 @default.
- W3198755721 hasConceptScore W3198755721C121332964 @default.
- W3198755721 hasConceptScore W3198755721C127413603 @default.
- W3198755721 hasConceptScore W3198755721C163258240 @default.
- W3198755721 hasConceptScore W3198755721C171146098 @default.
- W3198755721 hasConceptScore W3198755721C186370098 @default.
- W3198755721 hasConceptScore W3198755721C187691185 @default.
- W3198755721 hasConceptScore W3198755721C188573790 @default.
- W3198755721 hasConceptScore W3198755721C2524010 @default.
- W3198755721 hasConceptScore W3198755721C2778457487 @default.
- W3198755721 hasConceptScore W3198755721C33923547 @default.
- W3198755721 hasConceptScore W3198755721C39432304 @default.
- W3198755721 hasConceptScore W3198755721C41008148 @default.
- W3198755721 hasConceptScore W3198755721C41291067 @default.
- W3198755721 hasConceptScore W3198755721C555008776 @default.
- W3198755721 hasConceptScore W3198755721C62520636 @default.
- W3198755721 hasConceptScore W3198755721C73916439 @default.
- W3198755721 hasLocation W31987557211 @default.
- W3198755721 hasOpenAccess W3198755721 @default.
- W3198755721 hasPrimaryLocation W31987557211 @default.
- W3198755721 hasRelatedWork W1550358562 @default.
- W3198755721 hasRelatedWork W1584086910 @default.
- W3198755721 hasRelatedWork W2001647160 @default.
- W3198755721 hasRelatedWork W2077659158 @default.
- W3198755721 hasRelatedWork W2144533915 @default.
- W3198755721 hasRelatedWork W2209205686 @default.
- W3198755721 hasRelatedWork W2248455529 @default.
- W3198755721 hasRelatedWork W2252656971 @default.
- W3198755721 hasRelatedWork W2470859544 @default.
- W3198755721 hasRelatedWork W2606349850 @default.
- W3198755721 hasRelatedWork W2762232061 @default.
- W3198755721 hasRelatedWork W2911605261 @default.
- W3198755721 hasRelatedWork W2962722447 @default.
- W3198755721 hasRelatedWork W2996687825 @default.