Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198779878> ?p ?o ?g. }
- W3198779878 endingPage "222" @default.
- W3198779878 startingPage "207" @default.
- W3198779878 abstract "Coronavirus disease (COVID-19), also known as Severe acute respiratory syndrome (SARS-COV2) and it has imposed deep concern on public health globally. Based on its fast-spreading breakout among the people exposed to the wet animal market in Wuhan city of China, the city was indicated as its origin. The symptoms, reactions, and the rate of recovery shown in the coronavirus cases worldwide have been varied . The number of patients is still rising exponentially, and some countries are now battling the third wave. Since the most effective treatment of this disease has not been discovered so far, early detection of potential COVID-19 patients can help isolate them socially to decrease the spread and flatten the curve. In this study, we explore state-of-the-art research on coronavirus disease to determine the impact of this illness among various age groups. Moreover, we analyze the performance of the Decision tree (DT), K-nearest neighbors (KNN), Naïve bayes (NB), Support vector machine (SVM), and Logistic regression (LR) to determine COVID-19 in the patients based on their symptoms. A dataset obtained from a public repository was collected and pre-processed, before applying the selected Machine learning (ML) algorithms on them. The results demonstrate that all the ML algorithms incorporated perform well in determining COVID-19 in potential patients. NB and DT classifiers show the best performance with an accuracy of 93.70%, whereas other algorithms, such as SVM, KNN, and LR, demonstrate an accuracy of 93.60%, 93.50%, and 92.80% respectively. Hence, we determine that ML models have a significant role in detecting COVID-19 in patients based on their symptoms." @default.
- W3198779878 created "2021-09-13" @default.
- W3198779878 creator A5008909602 @default.
- W3198779878 creator A5010840129 @default.
- W3198779878 creator A5027162432 @default.
- W3198779878 creator A5032063470 @default.
- W3198779878 creator A5051290540 @default.
- W3198779878 creator A5056404230 @default.
- W3198779878 creator A5069595109 @default.
- W3198779878 creator A5078521536 @default.
- W3198779878 date "2022-01-01" @default.
- W3198779878 modified "2023-09-28" @default.
- W3198779878 title "Determination of COVID-19 Patients Using Machine Learning Algorithms" @default.
- W3198779878 cites W3001118548 @default.
- W3198779878 cites W3003668884 @default.
- W3198779878 cites W3006642361 @default.
- W3198779878 cites W3006856666 @default.
- W3198779878 cites W3007114958 @default.
- W3198779878 cites W3007273493 @default.
- W3198779878 cites W3007497549 @default.
- W3198779878 cites W3008294222 @default.
- W3198779878 cites W3008972896 @default.
- W3198779878 cites W3009607814 @default.
- W3198779878 cites W3011642264 @default.
- W3198779878 cites W3012860910 @default.
- W3198779878 cites W3013758358 @default.
- W3198779878 cites W3015030076 @default.
- W3198779878 cites W3016127017 @default.
- W3198779878 cites W3023787531 @default.
- W3198779878 cites W3024308493 @default.
- W3198779878 cites W3028070348 @default.
- W3198779878 cites W3031443331 @default.
- W3198779878 cites W3035434194 @default.
- W3198779878 cites W3036615367 @default.
- W3198779878 cites W3041463877 @default.
- W3198779878 cites W3121067595 @default.
- W3198779878 doi "https://doi.org/10.32604/iasc.2022.018753" @default.
- W3198779878 hasPublicationYear "2022" @default.
- W3198779878 type Work @default.
- W3198779878 sameAs 3198779878 @default.
- W3198779878 citedByCount "10" @default.
- W3198779878 countsByYear W31987798782021 @default.
- W3198779878 countsByYear W31987798782022 @default.
- W3198779878 countsByYear W31987798782023 @default.
- W3198779878 crossrefType "journal-article" @default.
- W3198779878 hasAuthorship W3198779878A5008909602 @default.
- W3198779878 hasAuthorship W3198779878A5010840129 @default.
- W3198779878 hasAuthorship W3198779878A5027162432 @default.
- W3198779878 hasAuthorship W3198779878A5032063470 @default.
- W3198779878 hasAuthorship W3198779878A5051290540 @default.
- W3198779878 hasAuthorship W3198779878A5056404230 @default.
- W3198779878 hasAuthorship W3198779878A5069595109 @default.
- W3198779878 hasAuthorship W3198779878A5078521536 @default.
- W3198779878 hasBestOaLocation W31987798781 @default.
- W3198779878 hasConcept C11413529 @default.
- W3198779878 hasConcept C119857082 @default.
- W3198779878 hasConcept C12267149 @default.
- W3198779878 hasConcept C126322002 @default.
- W3198779878 hasConcept C151956035 @default.
- W3198779878 hasConcept C154945302 @default.
- W3198779878 hasConcept C2777648638 @default.
- W3198779878 hasConcept C2779134260 @default.
- W3198779878 hasConcept C3008058167 @default.
- W3198779878 hasConcept C41008148 @default.
- W3198779878 hasConcept C52001869 @default.
- W3198779878 hasConcept C524204448 @default.
- W3198779878 hasConcept C71924100 @default.
- W3198779878 hasConcept C84525736 @default.
- W3198779878 hasConceptScore W3198779878C11413529 @default.
- W3198779878 hasConceptScore W3198779878C119857082 @default.
- W3198779878 hasConceptScore W3198779878C12267149 @default.
- W3198779878 hasConceptScore W3198779878C126322002 @default.
- W3198779878 hasConceptScore W3198779878C151956035 @default.
- W3198779878 hasConceptScore W3198779878C154945302 @default.
- W3198779878 hasConceptScore W3198779878C2777648638 @default.
- W3198779878 hasConceptScore W3198779878C2779134260 @default.
- W3198779878 hasConceptScore W3198779878C3008058167 @default.
- W3198779878 hasConceptScore W3198779878C41008148 @default.
- W3198779878 hasConceptScore W3198779878C52001869 @default.
- W3198779878 hasConceptScore W3198779878C524204448 @default.
- W3198779878 hasConceptScore W3198779878C71924100 @default.
- W3198779878 hasConceptScore W3198779878C84525736 @default.
- W3198779878 hasIssue "1" @default.
- W3198779878 hasLocation W31987798781 @default.
- W3198779878 hasOpenAccess W3198779878 @default.
- W3198779878 hasPrimaryLocation W31987798781 @default.
- W3198779878 hasRelatedWork W1470425429 @default.
- W3198779878 hasRelatedWork W3018390422 @default.
- W3198779878 hasRelatedWork W3186233728 @default.
- W3198779878 hasRelatedWork W4281846282 @default.
- W3198779878 hasRelatedWork W4291177832 @default.
- W3198779878 hasRelatedWork W4316658362 @default.
- W3198779878 hasRelatedWork W4321636153 @default.
- W3198779878 hasRelatedWork W4377964522 @default.
- W3198779878 hasRelatedWork W4383535405 @default.
- W3198779878 hasRelatedWork W4384345534 @default.
- W3198779878 hasVolume "31" @default.
- W3198779878 isParatext "false" @default.