Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198863175> ?p ?o ?g. }
- W3198863175 endingPage "5587" @default.
- W3198863175 startingPage "5587" @default.
- W3198863175 abstract "Battery storages are an essential element of the emerging smart grid. Compared to other distributed intelligent energy resources, batteries have the advantage of being able to rapidly react to events such as renewable generation fluctuations or grid disturbances. There is a lack of research on ways to profitably exploit this ability. Any solution needs to consider rapid electrical phenomena as well as the much slower dynamics of relevant electricity markets. Reinforcement learning is a branch of artificial intelligence that has shown promise in optimizing complex problems involving uncertainty. This article applies reinforcement learning to the problem of trading batteries. The problem involves two timescales, both of which are important for profitability. Firstly, trading the battery capacity must occur on the timescale of the chosen electricity markets. Secondly, the real-time operation of the battery must ensure that no financial penalties are incurred from failing to meet the technical specification. The trading-related decisions must be done under uncertainties, such as unknown future market prices and unpredictable power grid disturbances. In this article, a simulation model of a battery system is proposed as the environment to train a reinforcement learning agent to make such decisions. The system is demonstrated with an application of the battery to Finnish primary frequency reserve markets." @default.
- W3198863175 created "2021-09-13" @default.
- W3198863175 creator A5008070913 @default.
- W3198863175 creator A5036831094 @default.
- W3198863175 creator A5050820977 @default.
- W3198863175 creator A5063433253 @default.
- W3198863175 date "2021-09-06" @default.
- W3198863175 modified "2023-09-23" @default.
- W3198863175 title "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage" @default.
- W3198863175 cites W2087376161 @default.
- W3198863175 cites W2104154806 @default.
- W3198863175 cites W2135633066 @default.
- W3198863175 cites W2143991678 @default.
- W3198863175 cites W2282368189 @default.
- W3198863175 cites W2471115057 @default.
- W3198863175 cites W2748190103 @default.
- W3198863175 cites W2767535599 @default.
- W3198863175 cites W2790653821 @default.
- W3198863175 cites W2811447491 @default.
- W3198863175 cites W2885007278 @default.
- W3198863175 cites W2885731420 @default.
- W3198863175 cites W2888144009 @default.
- W3198863175 cites W2889388618 @default.
- W3198863175 cites W2898807872 @default.
- W3198863175 cites W2903198207 @default.
- W3198863175 cites W2911013471 @default.
- W3198863175 cites W2930411951 @default.
- W3198863175 cites W2957897705 @default.
- W3198863175 cites W2963597321 @default.
- W3198863175 cites W2966284335 @default.
- W3198863175 cites W2972622343 @default.
- W3198863175 cites W2973918021 @default.
- W3198863175 cites W2975238464 @default.
- W3198863175 cites W2998425192 @default.
- W3198863175 cites W3009959058 @default.
- W3198863175 cites W3012658475 @default.
- W3198863175 cites W3016252874 @default.
- W3198863175 cites W3017144359 @default.
- W3198863175 cites W3034748593 @default.
- W3198863175 cites W3040120612 @default.
- W3198863175 cites W3047508891 @default.
- W3198863175 cites W3048109112 @default.
- W3198863175 cites W3080215951 @default.
- W3198863175 cites W3084478537 @default.
- W3198863175 cites W3089328586 @default.
- W3198863175 cites W3091318459 @default.
- W3198863175 cites W3091760249 @default.
- W3198863175 cites W3092305369 @default.
- W3198863175 cites W3093318535 @default.
- W3198863175 cites W3095460974 @default.
- W3198863175 cites W3108096843 @default.
- W3198863175 cites W3111229615 @default.
- W3198863175 cites W3124346424 @default.
- W3198863175 cites W3130337549 @default.
- W3198863175 cites W3130583066 @default.
- W3198863175 cites W3131152733 @default.
- W3198863175 cites W3137942831 @default.
- W3198863175 cites W3153223281 @default.
- W3198863175 cites W3157049964 @default.
- W3198863175 cites W3158361850 @default.
- W3198863175 cites W3160080145 @default.
- W3198863175 cites W3162468675 @default.
- W3198863175 cites W3209838005 @default.
- W3198863175 doi "https://doi.org/10.3390/en14175587" @default.
- W3198863175 hasPublicationYear "2021" @default.
- W3198863175 type Work @default.
- W3198863175 sameAs 3198863175 @default.
- W3198863175 citedByCount "5" @default.
- W3198863175 countsByYear W31988631752022 @default.
- W3198863175 countsByYear W31988631752023 @default.
- W3198863175 crossrefType "journal-article" @default.
- W3198863175 hasAuthorship W3198863175A5008070913 @default.
- W3198863175 hasAuthorship W3198863175A5036831094 @default.
- W3198863175 hasAuthorship W3198863175A5050820977 @default.
- W3198863175 hasAuthorship W3198863175A5063433253 @default.
- W3198863175 hasBestOaLocation W31988631751 @default.
- W3198863175 hasConcept C10138342 @default.
- W3198863175 hasConcept C10558101 @default.
- W3198863175 hasConcept C112930515 @default.
- W3198863175 hasConcept C119599485 @default.
- W3198863175 hasConcept C121332964 @default.
- W3198863175 hasConcept C127413603 @default.
- W3198863175 hasConcept C129361004 @default.
- W3198863175 hasConcept C134560507 @default.
- W3198863175 hasConcept C144133560 @default.
- W3198863175 hasConcept C154945302 @default.
- W3198863175 hasConcept C162324750 @default.
- W3198863175 hasConcept C163258240 @default.
- W3198863175 hasConcept C165696696 @default.
- W3198863175 hasConcept C187691185 @default.
- W3198863175 hasConcept C188573790 @default.
- W3198863175 hasConcept C206658404 @default.
- W3198863175 hasConcept C2524010 @default.
- W3198863175 hasConcept C33923547 @default.
- W3198863175 hasConcept C38652104 @default.
- W3198863175 hasConcept C41008148 @default.
- W3198863175 hasConcept C42475967 @default.
- W3198863175 hasConcept C555008776 @default.