Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198907006> ?p ?o ?g. }
- W3198907006 endingPage "120509" @default.
- W3198907006 startingPage "120509" @default.
- W3198907006 abstract "High-U hydrothermal apatite with complex UPb systematics is closely spatially associated with mineralization at the Coles Hill deposit, the largest unmined uranium deposit known in the United States. The deposit is hosted in metasomatized rocks of the 450- to 430-Ma-old Martinsville Intrusive Complex in south-central Virginia. Direct dating of metamict uranium-ore minerals, mostly coffinite, is not possible due to open-system radon loss. Instead, UPb isotopes in cogenetic apatite were investigated as a means of evaluating the age of mineralization. Here we report in situ electron probe microanalyses (EPMA) of coffinite, isotope-dilution thermal-ionization mass spectrometry (ID-TIMS) UPb data for mineralized whole rock samples, and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) UPb isotope data for apatite in both unmineralized and U-mineralized host rocks. Massive deficits in radiogenic Pb preclude reliable UPb “chemical ages” calculated from EPMA data obtained from coffinite. In contrast, LA-ICPMS data for secondary apatite in unmineralized rocks indicate low-U concentrations (100–102 ppm), “normal” (consistent with models of terrestrial Pb isotopic evolution) initial Pb isotope compositions, and UPb age estimates of ~330 Ma, which is consistent with dates previously proposed for the regional Paleozoic shear zone that hosts the deposit. Ore-stage apatite associated with coffinite has high-U concentrations (typically 102–103 ppm but up to 2.4 wt% U) and large excesses of 206Pb (207Pb/206Pb < 0.01) unsupported by in situ U decay. Data show that initial Pb had variable isotopic compositions including both “normal” Pb derived from host rocks and 206Pb-enriched Pb introduced by secondary metasomatic fluids. Evaluation of the complex evolution and mixing of Pb sources has broader implications for UPb dating of hydrothermal apatite. Excess 206Pb in apatite is derived from decay products of 222Rn lost from coffinite and mobilized by Na-, P-, and U-enriched metasomatic fluids during the main mineralizing event at ~230 Ma. Ore-stage alteration did not uniformly reset the UPb systematics in host rocks precluding a well-constrained whole-rock isochron age. However, whole-rock isotope data imply U mobility at ~200–220 Ma and support a Triassic age for the final stages of mineralization. Results also indicate that apatite with up to several weight percent uranium is able to retain U and its decay products for hundreds of millions of years; an important consideration when assessing this mineral as a potential matrix for long-term storage of radioactive waste." @default.
- W3198907006 created "2021-09-13" @default.
- W3198907006 creator A5000588810 @default.
- W3198907006 creator A5032326990 @default.
- W3198907006 creator A5039142374 @default.
- W3198907006 creator A5050939502 @default.
- W3198907006 creator A5076402034 @default.
- W3198907006 date "2021-12-01" @default.
- W3198907006 modified "2023-10-16" @default.
- W3198907006 title "Use of high-U hydrothermal apatite containing excess 206Pb to constrain the age of uranium mineralization at the Coles Hill deposit, Virginia, USA" @default.
- W3198907006 cites W1965152252 @default.
- W3198907006 cites W1967401807 @default.
- W3198907006 cites W1968606576 @default.
- W3198907006 cites W1971179416 @default.
- W3198907006 cites W1988306017 @default.
- W3198907006 cites W1993202088 @default.
- W3198907006 cites W2003756222 @default.
- W3198907006 cites W2007105153 @default.
- W3198907006 cites W2019912681 @default.
- W3198907006 cites W2023644752 @default.
- W3198907006 cites W2023839770 @default.
- W3198907006 cites W2023863963 @default.
- W3198907006 cites W2023902466 @default.
- W3198907006 cites W2027065363 @default.
- W3198907006 cites W2035345920 @default.
- W3198907006 cites W2043999843 @default.
- W3198907006 cites W2048303534 @default.
- W3198907006 cites W2049366286 @default.
- W3198907006 cites W2052339500 @default.
- W3198907006 cites W2054839281 @default.
- W3198907006 cites W2055005061 @default.
- W3198907006 cites W2055604456 @default.
- W3198907006 cites W2059855332 @default.
- W3198907006 cites W2060225228 @default.
- W3198907006 cites W2064270258 @default.
- W3198907006 cites W2066155552 @default.
- W3198907006 cites W2067952300 @default.
- W3198907006 cites W2071235479 @default.
- W3198907006 cites W2079869057 @default.
- W3198907006 cites W2084707187 @default.
- W3198907006 cites W2086682009 @default.
- W3198907006 cites W2087471717 @default.
- W3198907006 cites W2088955098 @default.
- W3198907006 cites W2089507620 @default.
- W3198907006 cites W2094952990 @default.
- W3198907006 cites W2096502698 @default.
- W3198907006 cites W2115720536 @default.
- W3198907006 cites W2116635126 @default.
- W3198907006 cites W2116873962 @default.
- W3198907006 cites W2123499682 @default.
- W3198907006 cites W2131497882 @default.
- W3198907006 cites W2136024391 @default.
- W3198907006 cites W2146384001 @default.
- W3198907006 cites W2161878436 @default.
- W3198907006 cites W2170763186 @default.
- W3198907006 cites W2276992481 @default.
- W3198907006 cites W2303928679 @default.
- W3198907006 cites W2318221175 @default.
- W3198907006 cites W2333596805 @default.
- W3198907006 cites W2364579080 @default.
- W3198907006 cites W2403584518 @default.
- W3198907006 cites W2485623357 @default.
- W3198907006 cites W2554266035 @default.
- W3198907006 cites W2558444821 @default.
- W3198907006 cites W2610568280 @default.
- W3198907006 cites W2732655564 @default.
- W3198907006 cites W2755374053 @default.
- W3198907006 cites W2791701553 @default.
- W3198907006 cites W2970560592 @default.
- W3198907006 cites W3000845496 @default.
- W3198907006 cites W3009356241 @default.
- W3198907006 cites W3031934489 @default.
- W3198907006 cites W3096357415 @default.
- W3198907006 doi "https://doi.org/10.1016/j.chemgeo.2021.120509" @default.
- W3198907006 hasPublicationYear "2021" @default.
- W3198907006 type Work @default.
- W3198907006 sameAs 3198907006 @default.
- W3198907006 citedByCount "0" @default.
- W3198907006 crossrefType "journal-article" @default.
- W3198907006 hasAuthorship W3198907006A5000588810 @default.
- W3198907006 hasAuthorship W3198907006A5032326990 @default.
- W3198907006 hasAuthorship W3198907006A5039142374 @default.
- W3198907006 hasAuthorship W3198907006A5050939502 @default.
- W3198907006 hasAuthorship W3198907006A5076402034 @default.
- W3198907006 hasConcept C111696902 @default.
- W3198907006 hasConcept C127313418 @default.
- W3198907006 hasConcept C138411078 @default.
- W3198907006 hasConcept C156622251 @default.
- W3198907006 hasConcept C159390177 @default.
- W3198907006 hasConcept C159750122 @default.
- W3198907006 hasConcept C165205528 @default.
- W3198907006 hasConcept C17409809 @default.
- W3198907006 hasConcept C191897082 @default.
- W3198907006 hasConcept C192562407 @default.
- W3198907006 hasConcept C199289684 @default.
- W3198907006 hasConcept C2777746296 @default.
- W3198907006 hasConcept C555451288 @default.
- W3198907006 hasConcept C57016615 @default.