Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198923900> ?p ?o ?g. }
- W3198923900 endingPage "110155" @default.
- W3198923900 startingPage "110155" @default.
- W3198923900 abstract "Nondestructive testing and evaluation (NDT&E) are commonly used in the industry for their ability to identify damage and assess material conditions. Ultrasonic testing (UT) is one of the most popular NDT&E techniques. A variant of ultrasonic testing known as nonlinear ultrasonic testing (NUT) has some advantages over conventional (linear) UT as it is more sensitive to damages in their early stages; even at the microscopic levels. Furthermore, the nonlinear characteristics of ultrasonic waves can be correlated to several material properties. In the last two decades, the NUT method has been investigated from two aspects, namely the direct (modeling) problem and the inverse (NUT testing) problem. The direct problem aims to establish the nonlinear mechanism and analyze the behavior of wave-damage interaction. The inverse problem is investigated under three headings: (1) data acquisition with NUT techniques, (2) signal pre-processing and feature extraction, and (3) parameter analysis for damage characterization. The conventional data analytical methods extract nonlinear features from noisy signals and build a damage index to characterize damages. However, damage index-based analyzing model can be challenging, as other factors affect the overall system nonlinearity such as complex specimen geometry, different damage characteristics, varying ambient conditions, and measurement uncertainties. To overcome these shortcomings, machine learning (ML) methods appear promising for the analysis of complex nonlinear ultrasonic signals by exploiting data mining and pattern recognition capabilities. Therefore, this paper aims to provide a comprehensive review of the state-of-the-art ML-enriched NUT for damage characterization. Other NUT-based technologies are also reviewed, including modeling of wave-damage interaction, different NUT techniques for data acquisition, signal pre-processing methods, and damage index-based parameter analysis strategies for damage characterization. Major emphasis is placed on the application of ML methods for NDT&E applications. Additionally, future research trends on data augmentation, complex damage characterization, and baseline-free methods using NUT are also discussed. • The nonlinear ultrasonic testing is reviewed under direct and inverse problem. • The data analytics for damage characterization are reviewed. • The machine learning methods for damage characterization are reviewed. • The trends of ML-enriched NUT for damage characterization are discussed." @default.
- W3198923900 created "2021-09-27" @default.
- W3198923900 creator A5039854220 @default.
- W3198923900 creator A5055091576 @default.
- W3198923900 creator A5067001134 @default.
- W3198923900 creator A5087995322 @default.
- W3198923900 creator A5090310509 @default.
- W3198923900 date "2021-12-01" @default.
- W3198923900 modified "2023-10-16" @default.
- W3198923900 title "Nonlinear ultrasonic testing and data analytics for damage characterization: A review" @default.
- W3198923900 cites W1016952887 @default.
- W3198923900 cites W1224206844 @default.
- W3198923900 cites W1417367085 @default.
- W3198923900 cites W1482795631 @default.
- W3198923900 cites W1498436455 @default.
- W3198923900 cites W1822071811 @default.
- W3198923900 cites W1965638969 @default.
- W3198923900 cites W1969849282 @default.
- W3198923900 cites W1969996514 @default.
- W3198923900 cites W1970686328 @default.
- W3198923900 cites W1973903003 @default.
- W3198923900 cites W1975312736 @default.
- W3198923900 cites W1977060960 @default.
- W3198923900 cites W1980870763 @default.
- W3198923900 cites W1981511251 @default.
- W3198923900 cites W1982237802 @default.
- W3198923900 cites W1982598481 @default.
- W3198923900 cites W1983179583 @default.
- W3198923900 cites W1984568484 @default.
- W3198923900 cites W1985238530 @default.
- W3198923900 cites W1988948086 @default.
- W3198923900 cites W1992817938 @default.
- W3198923900 cites W1996877417 @default.
- W3198923900 cites W1997308333 @default.
- W3198923900 cites W2006197198 @default.
- W3198923900 cites W2007221293 @default.
- W3198923900 cites W2008624090 @default.
- W3198923900 cites W2011914030 @default.
- W3198923900 cites W2012463267 @default.
- W3198923900 cites W2015688155 @default.
- W3198923900 cites W2016574494 @default.
- W3198923900 cites W2017368485 @default.
- W3198923900 cites W2018656896 @default.
- W3198923900 cites W2020594936 @default.
- W3198923900 cites W2022011395 @default.
- W3198923900 cites W2025562533 @default.
- W3198923900 cites W2026490914 @default.
- W3198923900 cites W2028145115 @default.
- W3198923900 cites W2029841024 @default.
- W3198923900 cites W2033273034 @default.
- W3198923900 cites W2034888938 @default.
- W3198923900 cites W2035000247 @default.
- W3198923900 cites W2035345159 @default.
- W3198923900 cites W2035923667 @default.
- W3198923900 cites W2036124500 @default.
- W3198923900 cites W2039148420 @default.
- W3198923900 cites W2039476533 @default.
- W3198923900 cites W2044432440 @default.
- W3198923900 cites W2046497434 @default.
- W3198923900 cites W2050595900 @default.
- W3198923900 cites W2051765099 @default.
- W3198923900 cites W2054048570 @default.
- W3198923900 cites W2054323038 @default.
- W3198923900 cites W2055619139 @default.
- W3198923900 cites W2058451388 @default.
- W3198923900 cites W2060448992 @default.
- W3198923900 cites W2062468804 @default.
- W3198923900 cites W2065409023 @default.
- W3198923900 cites W2066592909 @default.
- W3198923900 cites W2067379510 @default.
- W3198923900 cites W2068070227 @default.
- W3198923900 cites W2072811329 @default.
- W3198923900 cites W2075438667 @default.
- W3198923900 cites W2076588477 @default.
- W3198923900 cites W2079558277 @default.
- W3198923900 cites W2086078778 @default.
- W3198923900 cites W2087753248 @default.
- W3198923900 cites W2089468765 @default.
- W3198923900 cites W2093299232 @default.
- W3198923900 cites W2094864015 @default.
- W3198923900 cites W2096352448 @default.
- W3198923900 cites W2099760520 @default.
- W3198923900 cites W2101754425 @default.
- W3198923900 cites W2112796928 @default.
- W3198923900 cites W2115689562 @default.
- W3198923900 cites W2127602933 @default.
- W3198923900 cites W2132178254 @default.
- W3198923900 cites W2133408258 @default.
- W3198923900 cites W2133667417 @default.
- W3198923900 cites W2135194391 @default.
- W3198923900 cites W2150593711 @default.
- W3198923900 cites W2151693816 @default.
- W3198923900 cites W2151842197 @default.
- W3198923900 cites W2160815625 @default.
- W3198923900 cites W2168481591 @default.
- W3198923900 cites W2169523857 @default.
- W3198923900 cites W2193840877 @default.
- W3198923900 cites W2194775991 @default.