Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198940765> ?p ?o ?g. }
- W3198940765 endingPage "113" @default.
- W3198940765 startingPage "108" @default.
- W3198940765 abstract "Throughout the coronavirus disease 2019 (COVID-19) pandemic, countries have relied on a variety of ad hoc border control protocols to allow for non-essential travel while safeguarding public health, from quarantining all travellers to restricting entry from select nations on the basis of population-level epidemiological metrics such as cases, deaths or testing positivity rates1,2. Here we report the design and performance of a reinforcement learning system, nicknamed Eva. In the summer of 2020, Eva was deployed across all Greek borders to limit the influx of asymptomatic travellers infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and to inform border policies through real-time estimates of COVID-19 prevalence. In contrast to country-wide protocols, Eva allocated Greece's limited testing resources on the basis of incoming travellers' demographic information and testing results from previous travellers. By comparing Eva's performance against modelled counterfactual scenarios, we show that Eva identified 1.85 times as many asymptomatic, infected travellers as random surveillance testing, with up to 2-4 times as many during peak travel, and 1.25-1.45 times as many asymptomatic, infected travellers as testing policies that utilize only epidemiological metrics. We demonstrate that this latter benefit arises, at least partially, because population-level epidemiological metrics had limited predictive value for the actual prevalence of SARS-CoV-2 among asymptomatic travellers and exhibited strong country-specific idiosyncrasies in the summer of 2020. Our results raise serious concerns on the effectiveness of country-agnostic internationally proposed border control policies3 that are based on population-level epidemiological metrics. Instead, our work represents a successful example of the potential of reinforcement learning and real-time data for safeguarding public health." @default.
- W3198940765 created "2021-09-27" @default.
- W3198940765 creator A5003930364 @default.
- W3198940765 creator A5019379026 @default.
- W3198940765 creator A5026888765 @default.
- W3198940765 creator A5047803413 @default.
- W3198940765 creator A5056419497 @default.
- W3198940765 creator A5075456619 @default.
- W3198940765 creator A5079802552 @default.
- W3198940765 creator A5087836097 @default.
- W3198940765 creator A5088996103 @default.
- W3198940765 date "2021-09-22" @default.
- W3198940765 modified "2023-10-10" @default.
- W3198940765 title "Efficient and targeted COVID-19 border testing via reinforcement learning" @default.
- W3198940765 cites W1678356000 @default.
- W3198940765 cites W1958090791 @default.
- W3198940765 cites W1975680434 @default.
- W3198940765 cites W1980492023 @default.
- W3198940765 cites W2009551863 @default.
- W3198940765 cites W2029241234 @default.
- W3198940765 cites W2039522160 @default.
- W3198940765 cites W2045850572 @default.
- W3198940765 cites W2135046866 @default.
- W3198940765 cites W2150291618 @default.
- W3198940765 cites W2508283833 @default.
- W3198940765 cites W3008294222 @default.
- W3198940765 cites W3008443627 @default.
- W3198940765 cites W3034304416 @default.
- W3198940765 cites W3084370551 @default.
- W3198940765 cites W3091913409 @default.
- W3198940765 cites W3100263832 @default.
- W3198940765 cites W3104457017 @default.
- W3198940765 cites W3124121179 @default.
- W3198940765 cites W3125634603 @default.
- W3198940765 cites W3150893739 @default.
- W3198940765 doi "https://doi.org/10.1038/s41586-021-04014-z" @default.
- W3198940765 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34551425" @default.
- W3198940765 hasPublicationYear "2021" @default.
- W3198940765 type Work @default.
- W3198940765 sameAs 3198940765 @default.
- W3198940765 citedByCount "45" @default.
- W3198940765 countsByYear W31989407652021 @default.
- W3198940765 countsByYear W31989407652022 @default.
- W3198940765 countsByYear W31989407652023 @default.
- W3198940765 crossrefType "journal-article" @default.
- W3198940765 hasAuthorship W3198940765A5003930364 @default.
- W3198940765 hasAuthorship W3198940765A5019379026 @default.
- W3198940765 hasAuthorship W3198940765A5026888765 @default.
- W3198940765 hasAuthorship W3198940765A5047803413 @default.
- W3198940765 hasAuthorship W3198940765A5056419497 @default.
- W3198940765 hasAuthorship W3198940765A5075456619 @default.
- W3198940765 hasAuthorship W3198940765A5079802552 @default.
- W3198940765 hasAuthorship W3198940765A5087836097 @default.
- W3198940765 hasAuthorship W3198940765A5088996103 @default.
- W3198940765 hasBestOaLocation W31989407651 @default.
- W3198940765 hasConcept C107130276 @default.
- W3198940765 hasConcept C142724271 @default.
- W3198940765 hasConcept C144133560 @default.
- W3198940765 hasConcept C2777910003 @default.
- W3198940765 hasConcept C2779134260 @default.
- W3198940765 hasConcept C2781402358 @default.
- W3198940765 hasConcept C2908647359 @default.
- W3198940765 hasConcept C3008058167 @default.
- W3198940765 hasConcept C524204448 @default.
- W3198940765 hasConcept C71924100 @default.
- W3198940765 hasConcept C89623803 @default.
- W3198940765 hasConcept C99454951 @default.
- W3198940765 hasConceptScore W3198940765C107130276 @default.
- W3198940765 hasConceptScore W3198940765C142724271 @default.
- W3198940765 hasConceptScore W3198940765C144133560 @default.
- W3198940765 hasConceptScore W3198940765C2777910003 @default.
- W3198940765 hasConceptScore W3198940765C2779134260 @default.
- W3198940765 hasConceptScore W3198940765C2781402358 @default.
- W3198940765 hasConceptScore W3198940765C2908647359 @default.
- W3198940765 hasConceptScore W3198940765C3008058167 @default.
- W3198940765 hasConceptScore W3198940765C524204448 @default.
- W3198940765 hasConceptScore W3198940765C71924100 @default.
- W3198940765 hasConceptScore W3198940765C89623803 @default.
- W3198940765 hasConceptScore W3198940765C99454951 @default.
- W3198940765 hasIssue "7883" @default.
- W3198940765 hasLocation W31989407651 @default.
- W3198940765 hasLocation W31989407652 @default.
- W3198940765 hasLocation W31989407653 @default.
- W3198940765 hasOpenAccess W3198940765 @default.
- W3198940765 hasPrimaryLocation W31989407651 @default.
- W3198940765 hasRelatedWork W1995188757 @default.
- W3198940765 hasRelatedWork W2016679923 @default.
- W3198940765 hasRelatedWork W2116001782 @default.
- W3198940765 hasRelatedWork W3022629482 @default.
- W3198940765 hasRelatedWork W3024019648 @default.
- W3198940765 hasRelatedWork W3037126043 @default.
- W3198940765 hasRelatedWork W3097373733 @default.
- W3198940765 hasRelatedWork W3216738899 @default.
- W3198940765 hasRelatedWork W4226099069 @default.
- W3198940765 hasRelatedWork W4229900919 @default.
- W3198940765 hasVolume "599" @default.
- W3198940765 isParatext "false" @default.
- W3198940765 isRetracted "false" @default.