Matches in SemOpenAlex for { <https://semopenalex.org/work/W3198984013> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3198984013 abstract "It is common for a time series dataset to have missing values, and it is necessary to fill these missing elements before using the dataset for training forecasting models. Usually this problem is tackled using non-machine learning methods that introduce bias into the system which results in unreliable forecasting results. Moreover, most of the work found in the literature tackles imputation of missing values when they are randomly scattered in the dataset while very little work is found tackling the case of consecutive occurrence of missing data; i.e. missing data chunks in the dataset. Therefore, in this work, comprehensive imputation models are developed to impute both random as well as chunks of missing values. Alongside, a framework is found enabling the user to impute any time series data with the optimal models. In order to carry out the task, one non-deep machine learning model (Bidirectional Imputation model) and three deep learning (DL) imputation models (Ensemble model, Transfer Learning model and Hybrid model), are tested using complete time series. The results show that the hybrid model yields a maximum of 38% improvement in the Aggregate Error (AGE) when compared with other models." @default.
- W3198984013 created "2021-09-27" @default.
- W3198984013 creator A5014485735 @default.
- W3198984013 creator A5024704337 @default.
- W3198984013 creator A5035038876 @default.
- W3198984013 creator A5070046659 @default.
- W3198984013 creator A5076891624 @default.
- W3198984013 date "2021-07-18" @default.
- W3198984013 modified "2023-10-15" @default.
- W3198984013 title "Versatile Deep Learning Based Application for Time Series Imputation" @default.
- W3198984013 cites W128149963 @default.
- W3198984013 cites W1909207154 @default.
- W3198984013 cites W1970557278 @default.
- W3198984013 cites W2047627251 @default.
- W3198984013 cites W2064675550 @default.
- W3198984013 cites W2085103107 @default.
- W3198984013 cites W2100128988 @default.
- W3198984013 cites W2154305527 @default.
- W3198984013 cites W2157331557 @default.
- W3198984013 cites W2165698076 @default.
- W3198984013 cites W2572939427 @default.
- W3198984013 cites W2613328025 @default.
- W3198984013 cites W2789819752 @default.
- W3198984013 cites W2807748885 @default.
- W3198984013 cites W2910647020 @default.
- W3198984013 cites W2914655379 @default.
- W3198984013 cites W2940616741 @default.
- W3198984013 cites W2942048286 @default.
- W3198984013 cites W2963360736 @default.
- W3198984013 cites W2963370351 @default.
- W3198984013 cites W2963608065 @default.
- W3198984013 cites W2964010366 @default.
- W3198984013 cites W2965353672 @default.
- W3198984013 cites W2979598391 @default.
- W3198984013 cites W3011632114 @default.
- W3198984013 cites W3014937650 @default.
- W3198984013 cites W3099417057 @default.
- W3198984013 cites W4239015571 @default.
- W3198984013 doi "https://doi.org/10.1109/ijcnn52387.2021.9533423" @default.
- W3198984013 hasPublicationYear "2021" @default.
- W3198984013 type Work @default.
- W3198984013 sameAs 3198984013 @default.
- W3198984013 citedByCount "3" @default.
- W3198984013 countsByYear W31989840132022 @default.
- W3198984013 countsByYear W31989840132023 @default.
- W3198984013 crossrefType "proceedings-article" @default.
- W3198984013 hasAuthorship W3198984013A5014485735 @default.
- W3198984013 hasAuthorship W3198984013A5024704337 @default.
- W3198984013 hasAuthorship W3198984013A5035038876 @default.
- W3198984013 hasAuthorship W3198984013A5070046659 @default.
- W3198984013 hasAuthorship W3198984013A5076891624 @default.
- W3198984013 hasConcept C108583219 @default.
- W3198984013 hasConcept C119857082 @default.
- W3198984013 hasConcept C124101348 @default.
- W3198984013 hasConcept C150899416 @default.
- W3198984013 hasConcept C151406439 @default.
- W3198984013 hasConcept C154945302 @default.
- W3198984013 hasConcept C41008148 @default.
- W3198984013 hasConcept C45942800 @default.
- W3198984013 hasConcept C58041806 @default.
- W3198984013 hasConcept C67186912 @default.
- W3198984013 hasConcept C77088390 @default.
- W3198984013 hasConcept C9357733 @default.
- W3198984013 hasConceptScore W3198984013C108583219 @default.
- W3198984013 hasConceptScore W3198984013C119857082 @default.
- W3198984013 hasConceptScore W3198984013C124101348 @default.
- W3198984013 hasConceptScore W3198984013C150899416 @default.
- W3198984013 hasConceptScore W3198984013C151406439 @default.
- W3198984013 hasConceptScore W3198984013C154945302 @default.
- W3198984013 hasConceptScore W3198984013C41008148 @default.
- W3198984013 hasConceptScore W3198984013C45942800 @default.
- W3198984013 hasConceptScore W3198984013C58041806 @default.
- W3198984013 hasConceptScore W3198984013C67186912 @default.
- W3198984013 hasConceptScore W3198984013C77088390 @default.
- W3198984013 hasConceptScore W3198984013C9357733 @default.
- W3198984013 hasLocation W31989840131 @default.
- W3198984013 hasOpenAccess W3198984013 @default.
- W3198984013 hasPrimaryLocation W31989840131 @default.
- W3198984013 hasRelatedWork W1574575415 @default.
- W3198984013 hasRelatedWork W2024529227 @default.
- W3198984013 hasRelatedWork W2081476516 @default.
- W3198984013 hasRelatedWork W2181530120 @default.
- W3198984013 hasRelatedWork W2581984549 @default.
- W3198984013 hasRelatedWork W3028371478 @default.
- W3198984013 hasRelatedWork W3144172081 @default.
- W3198984013 hasRelatedWork W3179858851 @default.
- W3198984013 hasRelatedWork W4211215373 @default.
- W3198984013 hasRelatedWork W3123177881 @default.
- W3198984013 isParatext "false" @default.
- W3198984013 isRetracted "false" @default.
- W3198984013 magId "3198984013" @default.
- W3198984013 workType "article" @default.