Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199143075> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3199143075 abstract "Cocaine addiction accounts for a large portion of substance use disorders and threatens millions of lives worldwide. There is an urgent need to come up with efficient anti-cocaine addiction drugs. Unfortunately, no medications have been approved by the Food and Drug Administration (FDA), despite the extensive effort in the past few decades. The main challenge is the intricate molecular mechanisms of cocaine addiction, involving synergistic interactions among proteins upstream and downstream of dopamine transporter (DAT) functions impacted by cocaine. However, traditional in vivo or in vitro experiments can not address the roles of so many proteins, highlighting the need for innovative strategies in the field. We propose a proteome-informed machine learning/deep learning (ML/DL) platform to discover nearly optimal anti-cocaine addiction lead compounds. We construct and analyze proteomic protein-protein interaction (PPI) networks for cocaine dependence to identify 141 involved drug targets and represent over 60,000 associated drug candidates or experimental drugs in the latent space using an autoencoder (EA) model trained from over 104 million molecules. We build 32 ML models for cross-target analysis of these drug candidates for side effects and repurposing potential. We further screen the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of these candidates. Our platform reveals that essentially all of the existing drug candidates, including dozens of experimental drugs, fail to pass our cross-target and ADMET screenings. Nonetheless, we have identified two nearly optimal leads for further optimization." @default.
- W3199143075 created "2021-09-27" @default.
- W3199143075 creator A5001330715 @default.
- W3199143075 creator A5024731941 @default.
- W3199143075 creator A5038778212 @default.
- W3199143075 creator A5052876982 @default.
- W3199143075 date "2021-09-17" @default.
- W3199143075 modified "2023-09-24" @default.
- W3199143075 title "Proteome-informed machine learning studies of cocaine addiction" @default.
- W3199143075 cites W1757990252 @default.
- W3199143075 cites W2038287971 @default.
- W3199143075 cites W2052814807 @default.
- W3199143075 cites W2064675550 @default.
- W3199143075 cites W2096541451 @default.
- W3199143075 cites W2177317049 @default.
- W3199143075 cites W3012107310 @default.
- W3199143075 cites W3195509796 @default.
- W3199143075 doi "https://doi.org/10.48550/arxiv.2109.08718" @default.
- W3199143075 hasPublicationYear "2021" @default.
- W3199143075 type Work @default.
- W3199143075 sameAs 3199143075 @default.
- W3199143075 citedByCount "0" @default.
- W3199143075 crossrefType "posted-content" @default.
- W3199143075 hasAuthorship W3199143075A5001330715 @default.
- W3199143075 hasAuthorship W3199143075A5024731941 @default.
- W3199143075 hasAuthorship W3199143075A5038778212 @default.
- W3199143075 hasAuthorship W3199143075A5052876982 @default.
- W3199143075 hasBestOaLocation W31991430751 @default.
- W3199143075 hasConcept C104397665 @default.
- W3199143075 hasConcept C118552586 @default.
- W3199143075 hasConcept C119857082 @default.
- W3199143075 hasConcept C18903297 @default.
- W3199143075 hasConcept C2780035454 @default.
- W3199143075 hasConcept C41008148 @default.
- W3199143075 hasConcept C48856860 @default.
- W3199143075 hasConcept C519536355 @default.
- W3199143075 hasConcept C60644358 @default.
- W3199143075 hasConcept C70721500 @default.
- W3199143075 hasConcept C71924100 @default.
- W3199143075 hasConcept C86803240 @default.
- W3199143075 hasConcept C98274493 @default.
- W3199143075 hasConceptScore W3199143075C104397665 @default.
- W3199143075 hasConceptScore W3199143075C118552586 @default.
- W3199143075 hasConceptScore W3199143075C119857082 @default.
- W3199143075 hasConceptScore W3199143075C18903297 @default.
- W3199143075 hasConceptScore W3199143075C2780035454 @default.
- W3199143075 hasConceptScore W3199143075C41008148 @default.
- W3199143075 hasConceptScore W3199143075C48856860 @default.
- W3199143075 hasConceptScore W3199143075C519536355 @default.
- W3199143075 hasConceptScore W3199143075C60644358 @default.
- W3199143075 hasConceptScore W3199143075C70721500 @default.
- W3199143075 hasConceptScore W3199143075C71924100 @default.
- W3199143075 hasConceptScore W3199143075C86803240 @default.
- W3199143075 hasConceptScore W3199143075C98274493 @default.
- W3199143075 hasLocation W31991430751 @default.
- W3199143075 hasLocation W31991430752 @default.
- W3199143075 hasOpenAccess W3199143075 @default.
- W3199143075 hasPrimaryLocation W31991430751 @default.
- W3199143075 hasRelatedWork W2032555056 @default.
- W3199143075 hasRelatedWork W2316833920 @default.
- W3199143075 hasRelatedWork W2383128297 @default.
- W3199143075 hasRelatedWork W2748952813 @default.
- W3199143075 hasRelatedWork W2899084033 @default.
- W3199143075 hasRelatedWork W3097985537 @default.
- W3199143075 hasRelatedWork W3196810768 @default.
- W3199143075 hasRelatedWork W3208113816 @default.
- W3199143075 hasRelatedWork W4220773510 @default.
- W3199143075 hasRelatedWork W4377098514 @default.
- W3199143075 isParatext "false" @default.
- W3199143075 isRetracted "false" @default.
- W3199143075 magId "3199143075" @default.
- W3199143075 workType "article" @default.