Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199146084> ?p ?o ?g. }
- W3199146084 endingPage "8438" @default.
- W3199146084 startingPage "8438" @default.
- W3199146084 abstract "Amid the worldwide COVID-19 pandemic lockdowns, the closure of educational institutes leads to an unprecedented rise in online learning. For limiting the impact of COVID-19 and obstructing its widespread, educational institutions closed their campuses immediately and academic activities are moved to e-learning platforms. The effectiveness of e-learning is a critical concern for both students and parents, specifically in terms of its suitability to students and teachers and its technical feasibility with respect to different social scenarios. Such concerns must be reviewed from several aspects before e-learning can be adopted at such a larger scale. This study endeavors to investigate the effectiveness of e-learning by analyzing the sentiments of people about e-learning. Due to the rise of social media as an important mode of communication recently, people’s views can be found on platforms such as Twitter, Instagram, Facebook, etc. This study uses a Twitter dataset containing 17,155 tweets about e-learning. Machine learning and deep learning approaches have shown their suitability, capability, and potential for image processing, object detection, and natural language processing tasks and text analysis is no exception. Machine learning approaches have been largely used both for annotation and text and sentiment analysis. Keeping in view the adequacy and efficacy of machine learning models, this study adopts TextBlob, VADER (Valence Aware Dictionary for Sentiment Reasoning), and SentiWordNet to analyze the polarity and subjectivity score of tweets’ text. Furthermore, bearing in mind the fact that machine learning models display high classification accuracy, various machine learning models have been used for sentiment classification. Two feature extraction techniques, TF-IDF (Term Frequency-Inverse Document Frequency) and BoW (Bag of Words) have been used to effectively build and evaluate the models. All the models have been evaluated in terms of various important performance metrics such as accuracy, precision, recall, and F1 score. The results reveal that the random forest and support vector machine classifier achieve the highest accuracy of 0.95 when used with Bow features. Performance comparison is carried out for results of TextBlob, VADER, and SentiWordNet, as well as classification results of machine learning models and deep learning models such as CNN (Convolutional Neural Network), LSTM (Long Short Term Memory), CNN-LSTM, and Bi-LSTM (Bidirectional-LSTM). Additionally, topic modeling is performed to find the problems associated with e-learning which indicates that uncertainty of campus opening date, children’s disabilities to grasp online education, and lagging efficient networks for online education are the top three problems." @default.
- W3199146084 created "2021-09-27" @default.
- W3199146084 creator A5023626139 @default.
- W3199146084 creator A5045335911 @default.
- W3199146084 creator A5047043390 @default.
- W3199146084 creator A5052032722 @default.
- W3199146084 creator A5058941449 @default.
- W3199146084 creator A5074629800 @default.
- W3199146084 creator A5087265578 @default.
- W3199146084 date "2021-09-12" @default.
- W3199146084 modified "2023-10-17" @default.
- W3199146084 title "Sentiment Analysis and Topic Modeling on Tweets about Online Education during COVID-19" @default.
- W3199146084 cites W1526460642 @default.
- W3199146084 cites W2022427793 @default.
- W3199146084 cites W2024932032 @default.
- W3199146084 cites W2125283600 @default.
- W3199146084 cites W2147152072 @default.
- W3199146084 cites W2150874198 @default.
- W3199146084 cites W2413899610 @default.
- W3199146084 cites W2781502290 @default.
- W3199146084 cites W2884297962 @default.
- W3199146084 cites W2938536030 @default.
- W3199146084 cites W2951773294 @default.
- W3199146084 cites W2988412621 @default.
- W3199146084 cites W3007539960 @default.
- W3199146084 cites W3015022426 @default.
- W3199146084 cites W3020018046 @default.
- W3199146084 cites W3025017744 @default.
- W3199146084 cites W3035883678 @default.
- W3199146084 cites W3090154305 @default.
- W3199146084 cites W3090454256 @default.
- W3199146084 cites W3094733139 @default.
- W3199146084 cites W3105951585 @default.
- W3199146084 cites W3124508579 @default.
- W3199146084 cites W3128585438 @default.
- W3199146084 cites W3131504710 @default.
- W3199146084 cites W3136929761 @default.
- W3199146084 cites W3146682110 @default.
- W3199146084 cites W3162843419 @default.
- W3199146084 cites W3164947024 @default.
- W3199146084 cites W3167401129 @default.
- W3199146084 cites W3195105121 @default.
- W3199146084 cites W4211186029 @default.
- W3199146084 doi "https://doi.org/10.3390/app11188438" @default.
- W3199146084 hasPublicationYear "2021" @default.
- W3199146084 type Work @default.
- W3199146084 sameAs 3199146084 @default.
- W3199146084 citedByCount "73" @default.
- W3199146084 countsByYear W31991460842021 @default.
- W3199146084 countsByYear W31991460842022 @default.
- W3199146084 countsByYear W31991460842023 @default.
- W3199146084 crossrefType "journal-article" @default.
- W3199146084 hasAuthorship W3199146084A5023626139 @default.
- W3199146084 hasAuthorship W3199146084A5045335911 @default.
- W3199146084 hasAuthorship W3199146084A5047043390 @default.
- W3199146084 hasAuthorship W3199146084A5052032722 @default.
- W3199146084 hasAuthorship W3199146084A5058941449 @default.
- W3199146084 hasAuthorship W3199146084A5074629800 @default.
- W3199146084 hasAuthorship W3199146084A5087265578 @default.
- W3199146084 hasBestOaLocation W31991460841 @default.
- W3199146084 hasConcept C119857082 @default.
- W3199146084 hasConcept C127413603 @default.
- W3199146084 hasConcept C136764020 @default.
- W3199146084 hasConcept C154945302 @default.
- W3199146084 hasConcept C188198153 @default.
- W3199146084 hasConcept C204321447 @default.
- W3199146084 hasConcept C2522767166 @default.
- W3199146084 hasConcept C41008148 @default.
- W3199146084 hasConcept C518677369 @default.
- W3199146084 hasConcept C66402592 @default.
- W3199146084 hasConcept C78519656 @default.
- W3199146084 hasConceptScore W3199146084C119857082 @default.
- W3199146084 hasConceptScore W3199146084C127413603 @default.
- W3199146084 hasConceptScore W3199146084C136764020 @default.
- W3199146084 hasConceptScore W3199146084C154945302 @default.
- W3199146084 hasConceptScore W3199146084C188198153 @default.
- W3199146084 hasConceptScore W3199146084C204321447 @default.
- W3199146084 hasConceptScore W3199146084C2522767166 @default.
- W3199146084 hasConceptScore W3199146084C41008148 @default.
- W3199146084 hasConceptScore W3199146084C518677369 @default.
- W3199146084 hasConceptScore W3199146084C66402592 @default.
- W3199146084 hasConceptScore W3199146084C78519656 @default.
- W3199146084 hasIssue "18" @default.
- W3199146084 hasLocation W31991460841 @default.
- W3199146084 hasOpenAccess W3199146084 @default.
- W3199146084 hasPrimaryLocation W31991460841 @default.
- W3199146084 hasRelatedWork W2184300592 @default.
- W3199146084 hasRelatedWork W2252197266 @default.
- W3199146084 hasRelatedWork W2999459970 @default.
- W3199146084 hasRelatedWork W3049681097 @default.
- W3199146084 hasRelatedWork W3148756070 @default.
- W3199146084 hasRelatedWork W3192794374 @default.
- W3199146084 hasRelatedWork W4205350312 @default.
- W3199146084 hasRelatedWork W4362613237 @default.
- W3199146084 hasRelatedWork W4379932966 @default.
- W3199146084 hasRelatedWork W4382286084 @default.
- W3199146084 hasVolume "11" @default.
- W3199146084 isParatext "false" @default.