Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199147943> ?p ?o ?g. }
- W3199147943 endingPage "103367" @default.
- W3199147943 startingPage "103367" @default.
- W3199147943 abstract "• An adaptive reinforcement learning model is developed to learn human travel behaviors in regular situations. • The model is capable of simulating the traffic conditions and evaluate the perturbations of disasters on urban mobility. • A case study of the 2017 Hurricane Harvey in Houston is conducted to examine the application of the model. • The model and outcomes of applications can inform the public and decision-makers about the response strategies and resilience planning to reduce the impacts of crises on urban mobility. The objective of this study is to propose and test an adaptive reinforcement learning model that can learn the patterns of human mobility in a normal context and simulate the mobility during perturbations caused by crises, such as flooding, wildfire, and hurricanes. Understanding and evaluating human mobility patterns, such as destination and trajectory selection, can inform emerging congestion and road closures raised by disruptions in emergencies. Data related to human movement trajectories are scarce, especially in the context of emergencies, which places a limitation on applications of existing urban mobility models learned from empirical data. Models with the capability of learning the mobility patterns from data generated in normal situations and which can adapt to emergency situations are needed to inform emergency response and urban resilience assessments. To address this gap, this study creates and tests an adaptive reinforcement learning model that can predict the destinations of movements, estimate the trajectory for each origin and destination pair, and examine the impact of perturbations on humans’ decisions related to destinations and movement trajectories. Employing millions of trajectory data from INRIX, the application of the proposed model is shown in the context of Houston and the flooding scenario caused by Hurricane Harvey in August 2017. The results show that the model can achieve more than 76% precision and recall at the model learning stage. The mean percentage error of the travel distance in predicted trajectories is 4.29%, compared to the travel distances in empirical data. In addition, predicted density of vehicles in grid cells are negatively associated with the traffic speed on road segments and inundation intensity in grid cells during the flooding. The results from the simulation further show that the model could predict traffic patterns and congestion resulting from urban flooding. The outcomes of the analysis demonstrate the capabilities of the model for analyzing urban mobility during crises, which can inform the public and decision-makers about the response strategies and resilience planning to reduce the impacts of crises on urban mobility." @default.
- W3199147943 created "2021-09-27" @default.
- W3199147943 creator A5023165780 @default.
- W3199147943 creator A5023245225 @default.
- W3199147943 creator A5040664702 @default.
- W3199147943 date "2021-12-01" @default.
- W3199147943 modified "2023-10-10" @default.
- W3199147943 title "Evaluating crisis perturbations on urban mobility using adaptive reinforcement learning" @default.
- W3199147943 cites W1550425799 @default.
- W3199147943 cites W1976040640 @default.
- W3199147943 cites W1976473400 @default.
- W3199147943 cites W1982300822 @default.
- W3199147943 cites W1990305734 @default.
- W3199147943 cites W2004902747 @default.
- W3199147943 cites W2007043321 @default.
- W3199147943 cites W2017053662 @default.
- W3199147943 cites W2042493333 @default.
- W3199147943 cites W2055992762 @default.
- W3199147943 cites W2069040327 @default.
- W3199147943 cites W2102148524 @default.
- W3199147943 cites W2133400794 @default.
- W3199147943 cites W2277132981 @default.
- W3199147943 cites W2513226432 @default.
- W3199147943 cites W2601026848 @default.
- W3199147943 cites W2744297038 @default.
- W3199147943 cites W2770092988 @default.
- W3199147943 cites W2792091275 @default.
- W3199147943 cites W2793443941 @default.
- W3199147943 cites W2799359827 @default.
- W3199147943 cites W2802508687 @default.
- W3199147943 cites W2895578254 @default.
- W3199147943 cites W2901850888 @default.
- W3199147943 cites W2904633773 @default.
- W3199147943 cites W2911968972 @default.
- W3199147943 cites W2914742901 @default.
- W3199147943 cites W2939020084 @default.
- W3199147943 cites W2946160394 @default.
- W3199147943 cites W2964192801 @default.
- W3199147943 cites W3003285143 @default.
- W3199147943 cites W3004748517 @default.
- W3199147943 cites W3009715589 @default.
- W3199147943 cites W3027102885 @default.
- W3199147943 cites W3033511608 @default.
- W3199147943 cites W3035154615 @default.
- W3199147943 cites W3041471345 @default.
- W3199147943 cites W3042024951 @default.
- W3199147943 cites W3043573314 @default.
- W3199147943 cites W3098301109 @default.
- W3199147943 cites W3107290567 @default.
- W3199147943 cites W3135728061 @default.
- W3199147943 cites W3193634482 @default.
- W3199147943 doi "https://doi.org/10.1016/j.scs.2021.103367" @default.
- W3199147943 hasPublicationYear "2021" @default.
- W3199147943 type Work @default.
- W3199147943 sameAs 3199147943 @default.
- W3199147943 citedByCount "8" @default.
- W3199147943 countsByYear W31991479432021 @default.
- W3199147943 countsByYear W31991479432022 @default.
- W3199147943 countsByYear W31991479432023 @default.
- W3199147943 crossrefType "journal-article" @default.
- W3199147943 hasAuthorship W3199147943A5023165780 @default.
- W3199147943 hasAuthorship W3199147943A5023245225 @default.
- W3199147943 hasAuthorship W3199147943A5040664702 @default.
- W3199147943 hasBestOaLocation W31991479431 @default.
- W3199147943 hasConcept C127413603 @default.
- W3199147943 hasConcept C154945302 @default.
- W3199147943 hasConcept C39432304 @default.
- W3199147943 hasConcept C41008148 @default.
- W3199147943 hasConcept C66938386 @default.
- W3199147943 hasConcept C67203356 @default.
- W3199147943 hasConcept C97541855 @default.
- W3199147943 hasConceptScore W3199147943C127413603 @default.
- W3199147943 hasConceptScore W3199147943C154945302 @default.
- W3199147943 hasConceptScore W3199147943C39432304 @default.
- W3199147943 hasConceptScore W3199147943C41008148 @default.
- W3199147943 hasConceptScore W3199147943C66938386 @default.
- W3199147943 hasConceptScore W3199147943C67203356 @default.
- W3199147943 hasConceptScore W3199147943C97541855 @default.
- W3199147943 hasFunder F4320306076 @default.
- W3199147943 hasFunder F4320310598 @default.
- W3199147943 hasFunder F4320332896 @default.
- W3199147943 hasLocation W31991479431 @default.
- W3199147943 hasOpenAccess W3199147943 @default.
- W3199147943 hasPrimaryLocation W31991479431 @default.
- W3199147943 hasRelatedWork W2899084033 @default.
- W3199147943 hasRelatedWork W2923653485 @default.
- W3199147943 hasRelatedWork W2957776456 @default.
- W3199147943 hasRelatedWork W2959276766 @default.
- W3199147943 hasRelatedWork W3005560120 @default.
- W3199147943 hasRelatedWork W3037422413 @default.
- W3199147943 hasRelatedWork W3173482257 @default.
- W3199147943 hasRelatedWork W3209094908 @default.
- W3199147943 hasRelatedWork W4206669594 @default.
- W3199147943 hasRelatedWork W4210912933 @default.
- W3199147943 hasVolume "75" @default.
- W3199147943 isParatext "false" @default.
- W3199147943 isRetracted "false" @default.
- W3199147943 magId "3199147943" @default.