Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199153961> ?p ?o ?g. }
- W3199153961 endingPage "1886" @default.
- W3199153961 startingPage "1869" @default.
- W3199153961 abstract "With the continuous increase in the proportional use of wind energy across the globe, the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research. Therefore, it is crucial to accurately analyze the thickness of icing on wind turbine blades, which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas. This paper fully utilized the advantages of the support vector machine (SVM) and back-propagation neural network (BPNN), with the incorporation of particle swarm optimization (PSO) algorithms to optimize the parameters of the SVM. The paper proposes a hybrid assessment model of PSO-SVM and BPNN based on dynamic weighting rules. Three sets of icing data under a rotating working state of the wind turbine were used as examples for model verification. Based on a comparative analysis with other models, the results showed that the proposed model has better accuracy and stability in analyzing the icing on wind turbine blades." @default.
- W3199153961 created "2021-09-27" @default.
- W3199153961 creator A5003759585 @default.
- W3199153961 creator A5023363049 @default.
- W3199153961 creator A5033869195 @default.
- W3199153961 creator A5061439656 @default.
- W3199153961 creator A5065067681 @default.
- W3199153961 date "2021-01-01" @default.
- W3199153961 modified "2023-09-25" @default.
- W3199153961 title "A Hybrid Model Based on Back-Propagation Neural Network and Optimized Support Vector Machine with Particle Swarm Algorithm for Assessing Blade Icing on Wind Turbines" @default.
- W3199153961 cites W1967122986 @default.
- W3199153961 cites W1970090588 @default.
- W3199153961 cites W1991240228 @default.
- W3199153961 cites W2000365681 @default.
- W3199153961 cites W2008547959 @default.
- W3199153961 cites W2046123065 @default.
- W3199153961 cites W2053296970 @default.
- W3199153961 cites W2074743521 @default.
- W3199153961 cites W2170029924 @default.
- W3199153961 cites W2338231622 @default.
- W3199153961 cites W2460123945 @default.
- W3199153961 cites W2512041617 @default.
- W3199153961 cites W2552093961 @default.
- W3199153961 cites W2585717215 @default.
- W3199153961 cites W2586402230 @default.
- W3199153961 cites W2601096366 @default.
- W3199153961 cites W2776902150 @default.
- W3199153961 cites W2781766808 @default.
- W3199153961 cites W2894034629 @default.
- W3199153961 cites W2895060054 @default.
- W3199153961 cites W2901540210 @default.
- W3199153961 cites W2904946854 @default.
- W3199153961 cites W2920917455 @default.
- W3199153961 cites W2921159331 @default.
- W3199153961 cites W2953549170 @default.
- W3199153961 cites W2961867266 @default.
- W3199153961 cites W2971998616 @default.
- W3199153961 cites W2997494145 @default.
- W3199153961 cites W3008398540 @default.
- W3199153961 cites W3012397375 @default.
- W3199153961 cites W3029383985 @default.
- W3199153961 cites W3034203846 @default.
- W3199153961 cites W3036063257 @default.
- W3199153961 cites W3041821311 @default.
- W3199153961 cites W3044107449 @default.
- W3199153961 cites W3044728732 @default.
- W3199153961 cites W3048505189 @default.
- W3199153961 cites W3080645124 @default.
- W3199153961 cites W4200252498 @default.
- W3199153961 cites W4245464459 @default.
- W3199153961 doi "https://doi.org/10.32604/ee.2021.015542" @default.
- W3199153961 hasPublicationYear "2021" @default.
- W3199153961 type Work @default.
- W3199153961 sameAs 3199153961 @default.
- W3199153961 citedByCount "0" @default.
- W3199153961 crossrefType "journal-article" @default.
- W3199153961 hasAuthorship W3199153961A5003759585 @default.
- W3199153961 hasAuthorship W3199153961A5023363049 @default.
- W3199153961 hasAuthorship W3199153961A5033869195 @default.
- W3199153961 hasAuthorship W3199153961A5061439656 @default.
- W3199153961 hasAuthorship W3199153961A5065067681 @default.
- W3199153961 hasBestOaLocation W31991539611 @default.
- W3199153961 hasConcept C11413529 @default.
- W3199153961 hasConcept C119599485 @default.
- W3199153961 hasConcept C121332964 @default.
- W3199153961 hasConcept C12267149 @default.
- W3199153961 hasConcept C126838900 @default.
- W3199153961 hasConcept C127413603 @default.
- W3199153961 hasConcept C153294291 @default.
- W3199153961 hasConcept C154945302 @default.
- W3199153961 hasConcept C161067210 @default.
- W3199153961 hasConcept C183115368 @default.
- W3199153961 hasConcept C2775924081 @default.
- W3199153961 hasConcept C2778449969 @default.
- W3199153961 hasConcept C2781439067 @default.
- W3199153961 hasConcept C41008148 @default.
- W3199153961 hasConcept C47446073 @default.
- W3199153961 hasConcept C50644808 @default.
- W3199153961 hasConcept C71924100 @default.
- W3199153961 hasConcept C78519656 @default.
- W3199153961 hasConcept C78600449 @default.
- W3199153961 hasConcept C85617194 @default.
- W3199153961 hasConceptScore W3199153961C11413529 @default.
- W3199153961 hasConceptScore W3199153961C119599485 @default.
- W3199153961 hasConceptScore W3199153961C121332964 @default.
- W3199153961 hasConceptScore W3199153961C12267149 @default.
- W3199153961 hasConceptScore W3199153961C126838900 @default.
- W3199153961 hasConceptScore W3199153961C127413603 @default.
- W3199153961 hasConceptScore W3199153961C153294291 @default.
- W3199153961 hasConceptScore W3199153961C154945302 @default.
- W3199153961 hasConceptScore W3199153961C161067210 @default.
- W3199153961 hasConceptScore W3199153961C183115368 @default.
- W3199153961 hasConceptScore W3199153961C2775924081 @default.
- W3199153961 hasConceptScore W3199153961C2778449969 @default.
- W3199153961 hasConceptScore W3199153961C2781439067 @default.
- W3199153961 hasConceptScore W3199153961C41008148 @default.
- W3199153961 hasConceptScore W3199153961C47446073 @default.
- W3199153961 hasConceptScore W3199153961C50644808 @default.