Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199180167> ?p ?o ?g. }
- W3199180167 endingPage "e26993" @default.
- W3199180167 startingPage "e26993" @default.
- W3199180167 abstract "This is the first scoping review to focus broadly on the topics of machine learning and medication adherence.This review aims to categorize, summarize, and analyze literature focused on using machine learning for actions related to medication adherence.PubMed, Scopus, ACM Digital Library, IEEE, and Web of Science were searched to find works that meet the inclusion criteria. After full-text review, 43 works were included in the final analysis. Information of interest was systematically charted before inclusion in the final draft. Studies were placed into natural categories for additional analysis dependent upon the combination of actions related to medication adherence. The protocol for this scoping review was created using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines.Publications focused on predicting medication adherence have uncovered 20 strong predictors that were significant in two or more studies. A total of 13 studies that predicted medication adherence used either self-reported questionnaires or pharmacy claims data to determine medication adherence status. In addition, 13 studies that predicted medication adherence did so using either logistic regression, artificial neural networks, random forest, or support vector machines. Of the 15 studies that predicted medication adherence, 6 reported predictor accuracy, the lowest of which was 77.6%. Of 13 monitoring systems, 12 determined medication administration using medication container sensors or sensors in consumer electronics, like smartwatches or smartphones. A total of 11 monitoring systems used logistic regression, artificial neural networks, support vector machines, or random forest algorithms to determine medication administration. The 4 systems that monitored inhaler administration reported a classification accuracy of 93.75% or higher. The 2 systems that monitored medication status in patients with Parkinson disease reported a classification accuracy of 78% or higher. A total of 3 studies monitored medication administration using only smartwatch sensors and reported a classification accuracy of 78.6% or higher. Two systems that provided context-aware medication reminders helped patients to achieve an adherence level of 92% or higher. Two conversational artificial intelligence reminder systems significantly improved adherence rates when compared against traditional reminder systems.Creation of systems that accurately predict medication adherence across multiple data sets may be possible due to predictors remaining strong across multiple studies. Higher quality measures of adherence should be adopted when possible so that prediction algorithms are based on accurate information. Currently, medication adherence can be predicted with a good level of accuracy, potentially allowing for the development of interventions aimed at preventing nonadherence. Monitoring systems that track inhaler use currently classify inhaler-related actions with an excellent level of accuracy, allowing for tracking of adherence and potentially proper inhaler technique. Systems that monitor medication states in patients with Parkinson disease can currently achieve a good level of classification accuracy and have the potential to inform medication therapy changes in the future. Medication administration monitoring systems that only use motion sensors in smartwatches can currently achieve a good level of classification accuracy but only when differentiating between a small number of possible activities. Context-aware reminder systems can help patients achieve high levels of medication adherence but are also intrusive, which may not be acceptable to users. Conversational artificial intelligence reminder systems can significantly improve adherence." @default.
- W3199180167 created "2021-09-27" @default.
- W3199180167 creator A5004243939 @default.
- W3199180167 creator A5015555148 @default.
- W3199180167 creator A5021205315 @default.
- W3199180167 date "2021-11-24" @default.
- W3199180167 modified "2023-10-17" @default.
- W3199180167 title "Machine Learning and Medication Adherence: Scoping Review" @default.
- W3199180167 cites W1425868093 @default.
- W3199180167 cites W1493115144 @default.
- W3199180167 cites W1741567663 @default.
- W3199180167 cites W1967542410 @default.
- W3199180167 cites W1968749808 @default.
- W3199180167 cites W1990856039 @default.
- W3199180167 cites W2019498308 @default.
- W3199180167 cites W2041165163 @default.
- W3199180167 cites W2152582606 @default.
- W3199180167 cites W2278682910 @default.
- W3199180167 cites W2323061988 @default.
- W3199180167 cites W2346353495 @default.
- W3199180167 cites W2519192455 @default.
- W3199180167 cites W2553475619 @default.
- W3199180167 cites W2556655680 @default.
- W3199180167 cites W2588412659 @default.
- W3199180167 cites W2590410822 @default.
- W3199180167 cites W2590881186 @default.
- W3199180167 cites W2604186734 @default.
- W3199180167 cites W2747344169 @default.
- W3199180167 cites W2768394194 @default.
- W3199180167 cites W2785423854 @default.
- W3199180167 cites W2785991093 @default.
- W3199180167 cites W2791223444 @default.
- W3199180167 cites W2792702568 @default.
- W3199180167 cites W2898128942 @default.
- W3199180167 cites W2898873184 @default.
- W3199180167 cites W2900438567 @default.
- W3199180167 cites W2913263577 @default.
- W3199180167 cites W2915269621 @default.
- W3199180167 cites W2932047266 @default.
- W3199180167 cites W2973044443 @default.
- W3199180167 cites W2976208691 @default.
- W3199180167 cites W2980552122 @default.
- W3199180167 cites W2980794448 @default.
- W3199180167 cites W2981714004 @default.
- W3199180167 cites W2982047611 @default.
- W3199180167 cites W2987778734 @default.
- W3199180167 cites W2999648166 @default.
- W3199180167 cites W3002302837 @default.
- W3199180167 cites W3004953277 @default.
- W3199180167 cites W3007417859 @default.
- W3199180167 cites W3010492903 @default.
- W3199180167 cites W3011542848 @default.
- W3199180167 cites W3099991607 @default.
- W3199180167 cites W789208081 @default.
- W3199180167 doi "https://doi.org/10.2196/26993" @default.
- W3199180167 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37725549" @default.
- W3199180167 hasPublicationYear "2021" @default.
- W3199180167 type Work @default.
- W3199180167 sameAs 3199180167 @default.
- W3199180167 citedByCount "8" @default.
- W3199180167 countsByYear W31991801672021 @default.
- W3199180167 countsByYear W31991801672022 @default.
- W3199180167 countsByYear W31991801672023 @default.
- W3199180167 crossrefType "journal-article" @default.
- W3199180167 hasAuthorship W3199180167A5004243939 @default.
- W3199180167 hasAuthorship W3199180167A5015555148 @default.
- W3199180167 hasAuthorship W3199180167A5021205315 @default.
- W3199180167 hasBestOaLocation W31991801671 @default.
- W3199180167 hasConcept C104863432 @default.
- W3199180167 hasConcept C119857082 @default.
- W3199180167 hasConcept C12267149 @default.
- W3199180167 hasConcept C142724271 @default.
- W3199180167 hasConcept C151956035 @default.
- W3199180167 hasConcept C154945302 @default.
- W3199180167 hasConcept C169258074 @default.
- W3199180167 hasConcept C17744445 @default.
- W3199180167 hasConcept C189708586 @default.
- W3199180167 hasConcept C199539241 @default.
- W3199180167 hasConcept C204787440 @default.
- W3199180167 hasConcept C2779473830 @default.
- W3199180167 hasConcept C2780385302 @default.
- W3199180167 hasConcept C41008148 @default.
- W3199180167 hasConcept C512399662 @default.
- W3199180167 hasConcept C71924100 @default.
- W3199180167 hasConcept C83867959 @default.
- W3199180167 hasConcept C94124525 @default.
- W3199180167 hasConceptScore W3199180167C104863432 @default.
- W3199180167 hasConceptScore W3199180167C119857082 @default.
- W3199180167 hasConceptScore W3199180167C12267149 @default.
- W3199180167 hasConceptScore W3199180167C142724271 @default.
- W3199180167 hasConceptScore W3199180167C151956035 @default.
- W3199180167 hasConceptScore W3199180167C154945302 @default.
- W3199180167 hasConceptScore W3199180167C169258074 @default.
- W3199180167 hasConceptScore W3199180167C17744445 @default.
- W3199180167 hasConceptScore W3199180167C189708586 @default.
- W3199180167 hasConceptScore W3199180167C199539241 @default.
- W3199180167 hasConceptScore W3199180167C204787440 @default.
- W3199180167 hasConceptScore W3199180167C2779473830 @default.