Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199221388> ?p ?o ?g. }
- W3199221388 endingPage "569" @default.
- W3199221388 startingPage "556" @default.
- W3199221388 abstract "Pollutant emissions into the atmosphere are recognized as a significant problem in fossil fuel combustion. The pollution emission measurement in industrial boilers is difficult and expensive but fundamental for monitoring and controlling. Frequently continuous emissions monitoring (CEM) system is out of service or useless due to obsolescence, high maintenance cost, and so on or simply is not installed. When a system for measuring pollutant emissions is not available, an alternative method must be employed to get the pollutant emission value. According to the black-box model approach, this article describes the nonlinear modeling of NOx emissions from a utility boiler. Bayesian-Gaussian (BG), multilayer perceptron (MLP), and Volterra polynomial basis functions (VPBF) neural networks are developed for model benchmarking. Experimental data from a utility boiler was acquired in order to model definition and evaluation. The models process three boiler variables oxygen excess, fuel mass flow and flue gas recirculation gates for NOx emission estimation. Models with BG show better performance than models with MLP and VPBF for NOx prediction.Implications: The technology to control NOx emissions generated by combustion operates under strict regulations. In order to reduce NOx emissions, theoretical models of NOx generation have been studied extensively, including nitrogen chemistry and the dynamic flow of gas particles which is very complex. The new technology trends would require the continuous measurement of high precision NOx emissions to achieve further reductions in NOx emissions. Currently, NOx emissions are measured by a Continuous Emission Monitoring system, which turns out to be extremely expensive and difficult to maintain, so alternative low-cost solutions are desirable. Our contribution shows how algorithms based on different artificial intelligence techniques are viable and quality alternatives for the measurement of continuous NOx emissions. The NOx emissions models based on IA algorithms are viable alternatives that have versatility and self-tuning capacity due to the fact that they are based on boiler operation parameters which have valuable information few explored nowadays." @default.
- W3199221388 created "2021-09-27" @default.
- W3199221388 creator A5051843016 @default.
- W3199221388 creator A5063813829 @default.
- W3199221388 creator A5068575787 @default.
- W3199221388 creator A5084424340 @default.
- W3199221388 creator A5086265847 @default.
- W3199221388 creator A5029539526 @default.
- W3199221388 date "2022-04-25" @default.
- W3199221388 modified "2023-10-09" @default.
- W3199221388 title "Nonlinear modeling of industrial boiler NOx emissions" @default.
- W3199221388 cites W1971735090 @default.
- W3199221388 cites W1977101634 @default.
- W3199221388 cites W1997629775 @default.
- W3199221388 cites W2014164605 @default.
- W3199221388 cites W2017714815 @default.
- W3199221388 cites W2019319598 @default.
- W3199221388 cites W2032225720 @default.
- W3199221388 cites W2035100132 @default.
- W3199221388 cites W2038122778 @default.
- W3199221388 cites W2040135606 @default.
- W3199221388 cites W2040897167 @default.
- W3199221388 cites W2042873906 @default.
- W3199221388 cites W2051453543 @default.
- W3199221388 cites W2083240652 @default.
- W3199221388 cites W2102148524 @default.
- W3199221388 cites W2103496339 @default.
- W3199221388 cites W2137983211 @default.
- W3199221388 cites W2142893770 @default.
- W3199221388 cites W2148478015 @default.
- W3199221388 cites W2171074980 @default.
- W3199221388 cites W2547564023 @default.
- W3199221388 cites W2561578800 @default.
- W3199221388 cites W2793801646 @default.
- W3199221388 cites W2901850499 @default.
- W3199221388 cites W2907913030 @default.
- W3199221388 cites W2912740037 @default.
- W3199221388 cites W2978619944 @default.
- W3199221388 cites W3037334127 @default.
- W3199221388 cites W3088258393 @default.
- W3199221388 cites W3156368563 @default.
- W3199221388 cites W40479804 @default.
- W3199221388 doi "https://doi.org/10.1080/10962247.2021.1980451" @default.
- W3199221388 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34519626" @default.
- W3199221388 hasPublicationYear "2022" @default.
- W3199221388 type Work @default.
- W3199221388 sameAs 3199221388 @default.
- W3199221388 citedByCount "1" @default.
- W3199221388 countsByYear W31992213882023 @default.
- W3199221388 crossrefType "journal-article" @default.
- W3199221388 hasAuthorship W3199221388A5029539526 @default.
- W3199221388 hasAuthorship W3199221388A5051843016 @default.
- W3199221388 hasAuthorship W3199221388A5063813829 @default.
- W3199221388 hasAuthorship W3199221388A5068575787 @default.
- W3199221388 hasAuthorship W3199221388A5084424340 @default.
- W3199221388 hasAuthorship W3199221388A5086265847 @default.
- W3199221388 hasBestOaLocation W31992213881 @default.
- W3199221388 hasConcept C105923489 @default.
- W3199221388 hasConcept C127413603 @default.
- W3199221388 hasConcept C167206829 @default.
- W3199221388 hasConcept C178790620 @default.
- W3199221388 hasConcept C185592680 @default.
- W3199221388 hasConcept C203032635 @default.
- W3199221388 hasConcept C21880701 @default.
- W3199221388 hasConcept C2780013297 @default.
- W3199221388 hasConcept C39432304 @default.
- W3199221388 hasConcept C548081761 @default.
- W3199221388 hasConcept C82685317 @default.
- W3199221388 hasConceptScore W3199221388C105923489 @default.
- W3199221388 hasConceptScore W3199221388C127413603 @default.
- W3199221388 hasConceptScore W3199221388C167206829 @default.
- W3199221388 hasConceptScore W3199221388C178790620 @default.
- W3199221388 hasConceptScore W3199221388C185592680 @default.
- W3199221388 hasConceptScore W3199221388C203032635 @default.
- W3199221388 hasConceptScore W3199221388C21880701 @default.
- W3199221388 hasConceptScore W3199221388C2780013297 @default.
- W3199221388 hasConceptScore W3199221388C39432304 @default.
- W3199221388 hasConceptScore W3199221388C548081761 @default.
- W3199221388 hasConceptScore W3199221388C82685317 @default.
- W3199221388 hasIssue "6" @default.
- W3199221388 hasLocation W31992213881 @default.
- W3199221388 hasLocation W31992213882 @default.
- W3199221388 hasOpenAccess W3199221388 @default.
- W3199221388 hasPrimaryLocation W31992213881 @default.
- W3199221388 hasRelatedWork W1545943565 @default.
- W3199221388 hasRelatedWork W1987391702 @default.
- W3199221388 hasRelatedWork W2054071901 @default.
- W3199221388 hasRelatedWork W2058950395 @default.
- W3199221388 hasRelatedWork W2348557469 @default.
- W3199221388 hasRelatedWork W2353265350 @default.
- W3199221388 hasRelatedWork W2377165811 @default.
- W3199221388 hasRelatedWork W2379102974 @default.
- W3199221388 hasRelatedWork W2954449030 @default.
- W3199221388 hasRelatedWork W3016453776 @default.
- W3199221388 hasVolume "72" @default.
- W3199221388 isParatext "false" @default.
- W3199221388 isRetracted "false" @default.
- W3199221388 magId "3199221388" @default.