Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199250719> ?p ?o ?g. }
- W3199250719 endingPage "8722" @default.
- W3199250719 startingPage "8712" @default.
- W3199250719 abstract "In this study, we propose a novel method of pKa prediction in a diverse set of acids, which combines density functional theory (DFT) method with machine learning (ML) methods. First, the DFT method with B3LYP/6-31++G**/SM8 is used to predict pKa, yielding a mean absolute error of 1.85 pKa units. Subsequently, such pKa values predicted from the DFT method are employed as one of 10 molecular descriptors for developing ML models trained on experimental data. Kernel Ridge Regression (KRR), Gaussian Process Regression, and Artificial Neural Network are optimized using three Pipelines: Pipeline 1 involving only hyperparameter optimization (HPO), Pipeline 2 involving HPO followed by a relative contribution analysis (RCA) and recursive feature elimination (RFE), and Pipeline 3 involving HPO followed by RCA and RFE on an expanded set of composite features. Finally, it is demonstrated that KRR with Pipeline 3 yields optimal pKa prediction at an MAE of 0.60 log units. This algorithm was then utilized to predict the pKa of 37 novel acids. The two most important features were determined to be the number of hydrogen atoms in the molecule and the degree of oxidation of the acid. The predicted pKa values were documented for future reference." @default.
- W3199250719 created "2021-09-27" @default.
- W3199250719 creator A5017550701 @default.
- W3199250719 creator A5031989955 @default.
- W3199250719 creator A5033885870 @default.
- W3199250719 creator A5033990851 @default.
- W3199250719 creator A5062071958 @default.
- W3199250719 creator A5081712240 @default.
- W3199250719 creator A5090363901 @default.
- W3199250719 date "2021-09-23" @default.
- W3199250719 modified "2023-10-11" @default.
- W3199250719 title "DFT-Machine Learning Approach for Accurate Prediction of p<i>K</i><sub>a</sub>" @default.
- W3199250719 cites W1510073064 @default.
- W3199250719 cites W1530949129 @default.
- W3199250719 cites W1605866982 @default.
- W3199250719 cites W1965725481 @default.
- W3199250719 cites W1969032640 @default.
- W3199250719 cites W1978996308 @default.
- W3199250719 cites W1982356449 @default.
- W3199250719 cites W1985630987 @default.
- W3199250719 cites W1990257642 @default.
- W3199250719 cites W1994116311 @default.
- W3199250719 cites W1999248820 @default.
- W3199250719 cites W2000500972 @default.
- W3199250719 cites W2008423326 @default.
- W3199250719 cites W2011201847 @default.
- W3199250719 cites W2017360381 @default.
- W3199250719 cites W2017398555 @default.
- W3199250719 cites W2019561942 @default.
- W3199250719 cites W2022694548 @default.
- W3199250719 cites W2025990255 @default.
- W3199250719 cites W2027423337 @default.
- W3199250719 cites W2027609215 @default.
- W3199250719 cites W2030795020 @default.
- W3199250719 cites W2035342751 @default.
- W3199250719 cites W2037773542 @default.
- W3199250719 cites W2041981334 @default.
- W3199250719 cites W2042804544 @default.
- W3199250719 cites W2054809436 @default.
- W3199250719 cites W2062773033 @default.
- W3199250719 cites W2064953310 @default.
- W3199250719 cites W2066745269 @default.
- W3199250719 cites W2073637781 @default.
- W3199250719 cites W2078277930 @default.
- W3199250719 cites W2078630544 @default.
- W3199250719 cites W2090340228 @default.
- W3199250719 cites W2091431720 @default.
- W3199250719 cites W2099830610 @default.
- W3199250719 cites W2105192472 @default.
- W3199250719 cites W2105331161 @default.
- W3199250719 cites W2123433643 @default.
- W3199250719 cites W2123784136 @default.
- W3199250719 cites W2125653280 @default.
- W3199250719 cites W2133627924 @default.
- W3199250719 cites W2140796250 @default.
- W3199250719 cites W2148911913 @default.
- W3199250719 cites W2149912955 @default.
- W3199250719 cites W2154775028 @default.
- W3199250719 cites W2334821946 @default.
- W3199250719 cites W2412746331 @default.
- W3199250719 cites W2549115005 @default.
- W3199250719 cites W2557634961 @default.
- W3199250719 cites W2618578095 @default.
- W3199250719 cites W2792351009 @default.
- W3199250719 cites W2797500032 @default.
- W3199250719 cites W2805889328 @default.
- W3199250719 cites W2950555776 @default.
- W3199250719 cites W2966168006 @default.
- W3199250719 cites W2973634761 @default.
- W3199250719 cites W2980026765 @default.
- W3199250719 cites W3005339873 @default.
- W3199250719 cites W3043569973 @default.
- W3199250719 cites W4211072535 @default.
- W3199250719 cites W4211079109 @default.
- W3199250719 cites W4244806755 @default.
- W3199250719 cites W4253667136 @default.
- W3199250719 cites W429766147 @default.
- W3199250719 cites W4300402905 @default.
- W3199250719 doi "https://doi.org/10.1021/acs.jpca.1c05031" @default.
- W3199250719 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34554744" @default.
- W3199250719 hasPublicationYear "2021" @default.
- W3199250719 type Work @default.
- W3199250719 sameAs 3199250719 @default.
- W3199250719 citedByCount "8" @default.
- W3199250719 countsByYear W31992507192022 @default.
- W3199250719 countsByYear W31992507192023 @default.
- W3199250719 crossrefType "journal-article" @default.
- W3199250719 hasAuthorship W3199250719A5017550701 @default.
- W3199250719 hasAuthorship W3199250719A5031989955 @default.
- W3199250719 hasAuthorship W3199250719A5033885870 @default.
- W3199250719 hasAuthorship W3199250719A5033990851 @default.
- W3199250719 hasAuthorship W3199250719A5062071958 @default.
- W3199250719 hasAuthorship W3199250719A5081712240 @default.
- W3199250719 hasAuthorship W3199250719A5090363901 @default.
- W3199250719 hasConcept C119857082 @default.
- W3199250719 hasConcept C154945302 @default.
- W3199250719 hasConcept C185592680 @default.
- W3199250719 hasConcept C41008148 @default.