Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199262103> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3199262103 abstract "Early detection of breast cancer is crucial when treating than cure in later mammogram screening processes. To date, researchers extensively proposed the implementation of artificial intelligence to develop a computer-aided system (CAD) to determine types of breast tumour lesion, whether benign or malignant. This approach is significant to minimise the rate of misinterpretation in false positive and false negative diagnosis results among radiologists. Lack of established medical datasets publicly available has become the main reason why the system is not fully implemented in clinical settings yet. This study is aimed to investigate the performance of a convolutional neural network (CNN) to detect cancerous lesion types. The pre-trained CNN networks are tested on two established public datasets, CBIS-DDSM and INbreast. Pre-processing using denoising and contrast limited adaptive histogram equalisation (CLAHE) and augmented to lessen the effect of overfitting. The pre-trained CNNs AlexNet and InceptionV3 represent shallow and deeper neural networks respectively, trained using the transfer learning method. Performance of the system is tested and its accuracy, losses, sensitivity, specificity, and receiver operating characteristic curve (ROC) are evaluated. The InceptionV3 network performs better with the highest testing and area under the curve (AUC) at 99.93% compared to shallower AlexNet at 98.92% using INbreast dataset. Training the system using augmented data is proven to improve testing accuracy at 86.7% from 60.26% using a non-augmented dataset in low-quality input images. Meanwhile, using a shallower network for transfer learning produces high accuracy results without compromising computational cost. This study serves as the platform to improve the system’s performance by varying the pretrained networks used and getting different features from each convolutional layer to be trained in the future." @default.
- W3199262103 created "2021-09-27" @default.
- W3199262103 creator A5005664778 @default.
- W3199262103 creator A5010337917 @default.
- W3199262103 creator A5028702508 @default.
- W3199262103 creator A5029900048 @default.
- W3199262103 creator A5078773274 @default.
- W3199262103 date "2021-08-27" @default.
- W3199262103 modified "2023-10-02" @default.
- W3199262103 title "High-level Features in Deeper Deep Learning Layers for Breast Cancer Classification" @default.
- W3199262103 cites W2108598243 @default.
- W3199262103 cites W2183341477 @default.
- W3199262103 cites W2592949994 @default.
- W3199262103 cites W2776937175 @default.
- W3199262103 cites W2900144270 @default.
- W3199262103 cites W2908052439 @default.
- W3199262103 cites W2943568678 @default.
- W3199262103 cites W2964189045 @default.
- W3199262103 cites W2980030301 @default.
- W3199262103 cites W2984544647 @default.
- W3199262103 cites W3004577623 @default.
- W3199262103 cites W3033295080 @default.
- W3199262103 cites W304373761 @default.
- W3199262103 cites W3078697145 @default.
- W3199262103 cites W3094325516 @default.
- W3199262103 cites W3096265120 @default.
- W3199262103 cites W3128646645 @default.
- W3199262103 cites W3130362871 @default.
- W3199262103 cites W3138088910 @default.
- W3199262103 cites W3146507087 @default.
- W3199262103 doi "https://doi.org/10.1109/iccsce52189.2021.9530911" @default.
- W3199262103 hasPublicationYear "2021" @default.
- W3199262103 type Work @default.
- W3199262103 sameAs 3199262103 @default.
- W3199262103 citedByCount "3" @default.
- W3199262103 countsByYear W31992621032023 @default.
- W3199262103 crossrefType "proceedings-article" @default.
- W3199262103 hasAuthorship W3199262103A5005664778 @default.
- W3199262103 hasAuthorship W3199262103A5010337917 @default.
- W3199262103 hasAuthorship W3199262103A5028702508 @default.
- W3199262103 hasAuthorship W3199262103A5029900048 @default.
- W3199262103 hasAuthorship W3199262103A5078773274 @default.
- W3199262103 hasConcept C108583219 @default.
- W3199262103 hasConcept C119857082 @default.
- W3199262103 hasConcept C121608353 @default.
- W3199262103 hasConcept C126322002 @default.
- W3199262103 hasConcept C150899416 @default.
- W3199262103 hasConcept C153180895 @default.
- W3199262103 hasConcept C154945302 @default.
- W3199262103 hasConcept C22019652 @default.
- W3199262103 hasConcept C2779549770 @default.
- W3199262103 hasConcept C41008148 @default.
- W3199262103 hasConcept C50644808 @default.
- W3199262103 hasConcept C530470458 @default.
- W3199262103 hasConcept C58471807 @default.
- W3199262103 hasConcept C71924100 @default.
- W3199262103 hasConcept C81363708 @default.
- W3199262103 hasConceptScore W3199262103C108583219 @default.
- W3199262103 hasConceptScore W3199262103C119857082 @default.
- W3199262103 hasConceptScore W3199262103C121608353 @default.
- W3199262103 hasConceptScore W3199262103C126322002 @default.
- W3199262103 hasConceptScore W3199262103C150899416 @default.
- W3199262103 hasConceptScore W3199262103C153180895 @default.
- W3199262103 hasConceptScore W3199262103C154945302 @default.
- W3199262103 hasConceptScore W3199262103C22019652 @default.
- W3199262103 hasConceptScore W3199262103C2779549770 @default.
- W3199262103 hasConceptScore W3199262103C41008148 @default.
- W3199262103 hasConceptScore W3199262103C50644808 @default.
- W3199262103 hasConceptScore W3199262103C530470458 @default.
- W3199262103 hasConceptScore W3199262103C58471807 @default.
- W3199262103 hasConceptScore W3199262103C71924100 @default.
- W3199262103 hasConceptScore W3199262103C81363708 @default.
- W3199262103 hasFunder F4320322780 @default.
- W3199262103 hasLocation W31992621031 @default.
- W3199262103 hasOpenAccess W3199262103 @default.
- W3199262103 hasPrimaryLocation W31992621031 @default.
- W3199262103 hasRelatedWork W2767651786 @default.
- W3199262103 hasRelatedWork W2783710041 @default.
- W3199262103 hasRelatedWork W3012393889 @default.
- W3199262103 hasRelatedWork W3091976719 @default.
- W3199262103 hasRelatedWork W3099765033 @default.
- W3199262103 hasRelatedWork W3192840557 @default.
- W3199262103 hasRelatedWork W4220996320 @default.
- W3199262103 hasRelatedWork W4224526119 @default.
- W3199262103 hasRelatedWork W4313020796 @default.
- W3199262103 hasRelatedWork W4313289428 @default.
- W3199262103 isParatext "false" @default.
- W3199262103 isRetracted "false" @default.
- W3199262103 magId "3199262103" @default.
- W3199262103 workType "article" @default.