Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199279817> ?p ?o ?g. }
- W3199279817 endingPage "1438" @default.
- W3199279817 startingPage "1438" @default.
- W3199279817 abstract "Research of inflammatory bowel disease (IBD) has identified numerous molecular players involved in the disease development. Even so, the understanding of IBD is incomplete, while disease treatment is still far from the precision medicine. Reliable diagnostic and prognostic biomarkers in IBD are limited which may reduce efficient therapeutic outcomes. High-throughput technologies and artificial intelligence emerged as powerful tools in search of unrevealed molecular patterns that could give important insights into IBD pathogenesis and help to address unmet clinical needs. Machine learning, a subtype of artificial intelligence, uses complex mathematical algorithms to learn from existing data in order to predict future outcomes. The scientific community has been increasingly employing machine learning for the prediction of IBD outcomes from comprehensive patient data-clinical records, genomic, transcriptomic, proteomic, metagenomic, and other IBD relevant omics data. This review aims to present fundamental principles behind machine learning modeling and its current application in IBD research with the focus on studies that explored genomic and transcriptomic data. We described different strategies used for dealing with omics data and outlined the best-performing methods. Before being translated into clinical settings, the developed machine learning models should be tested in independent prospective studies as well as randomized controlled trials." @default.
- W3199279817 created "2021-09-27" @default.
- W3199279817 creator A5000704101 @default.
- W3199279817 creator A5002226417 @default.
- W3199279817 creator A5021945483 @default.
- W3199279817 creator A5033097946 @default.
- W3199279817 creator A5046586825 @default.
- W3199279817 creator A5068634086 @default.
- W3199279817 date "2021-09-18" @default.
- W3199279817 modified "2023-10-17" @default.
- W3199279817 title "Machine Learning Modeling from Omics Data as Prospective Tool for Improvement of Inflammatory Bowel Disease Diagnosis and Clinical Classifications" @default.
- W3199279817 cites W1005824370 @default.
- W3199279817 cites W1014257459 @default.
- W3199279817 cites W1509816035 @default.
- W3199279817 cites W1607497471 @default.
- W3199279817 cites W1670573097 @default.
- W3199279817 cites W1907905539 @default.
- W3199279817 cites W1971376634 @default.
- W3199279817 cites W1980725116 @default.
- W3199279817 cites W1986146810 @default.
- W3199279817 cites W1990700240 @default.
- W3199279817 cites W1992711646 @default.
- W3199279817 cites W2002466929 @default.
- W3199279817 cites W2006453091 @default.
- W3199279817 cites W2022987102 @default.
- W3199279817 cites W2024192805 @default.
- W3199279817 cites W2047208232 @default.
- W3199279817 cites W2049897663 @default.
- W3199279817 cites W2072063447 @default.
- W3199279817 cites W2078621117 @default.
- W3199279817 cites W2085284704 @default.
- W3199279817 cites W2096701144 @default.
- W3199279817 cites W2116432220 @default.
- W3199279817 cites W2121063416 @default.
- W3199279817 cites W2126660615 @default.
- W3199279817 cites W2126769079 @default.
- W3199279817 cites W2131273916 @default.
- W3199279817 cites W2143625465 @default.
- W3199279817 cites W2144502656 @default.
- W3199279817 cites W2147239664 @default.
- W3199279817 cites W2147530983 @default.
- W3199279817 cites W2151088711 @default.
- W3199279817 cites W2160011929 @default.
- W3199279817 cites W2160473148 @default.
- W3199279817 cites W2161377277 @default.
- W3199279817 cites W2188248802 @default.
- W3199279817 cites W2210968259 @default.
- W3199279817 cites W2292002414 @default.
- W3199279817 cites W2315724328 @default.
- W3199279817 cites W2531015655 @default.
- W3199279817 cites W2579361964 @default.
- W3199279817 cites W2586280057 @default.
- W3199279817 cites W2588920758 @default.
- W3199279817 cites W2604222166 @default.
- W3199279817 cites W2606715885 @default.
- W3199279817 cites W2614911760 @default.
- W3199279817 cites W2615924345 @default.
- W3199279817 cites W2624135745 @default.
- W3199279817 cites W2699811267 @default.
- W3199279817 cites W2742473059 @default.
- W3199279817 cites W2746163443 @default.
- W3199279817 cites W2749616891 @default.
- W3199279817 cites W2753419271 @default.
- W3199279817 cites W2765885372 @default.
- W3199279817 cites W2780771183 @default.
- W3199279817 cites W2783861641 @default.
- W3199279817 cites W2794023911 @default.
- W3199279817 cites W2798086101 @default.
- W3199279817 cites W2800145376 @default.
- W3199279817 cites W2887951414 @default.
- W3199279817 cites W2898110333 @default.
- W3199279817 cites W2910494796 @default.
- W3199279817 cites W2915859744 @default.
- W3199279817 cites W2937349617 @default.
- W3199279817 cites W2942200926 @default.
- W3199279817 cites W2942709403 @default.
- W3199279817 cites W2946474601 @default.
- W3199279817 cites W2959750635 @default.
- W3199279817 cites W2961187239 @default.
- W3199279817 cites W2963622568 @default.
- W3199279817 cites W2970463661 @default.
- W3199279817 cites W2976096265 @default.
- W3199279817 cites W3007279380 @default.
- W3199279817 cites W3007596590 @default.
- W3199279817 cites W3010274200 @default.
- W3199279817 cites W3012377065 @default.
- W3199279817 cites W3012707556 @default.
- W3199279817 cites W3012970489 @default.
- W3199279817 cites W3048579307 @default.
- W3199279817 cites W3093730473 @default.
- W3199279817 cites W3096001285 @default.
- W3199279817 cites W3096642971 @default.
- W3199279817 cites W3107906549 @default.
- W3199279817 cites W3157079437 @default.
- W3199279817 cites W3163924330 @default.
- W3199279817 cites W3164182598 @default.
- W3199279817 cites W3165677162 @default.
- W3199279817 cites W4230633180 @default.