Matches in SemOpenAlex for { <https://semopenalex.org/work/W3199312185> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3199312185 abstract "As a kind of statistical model, credit scoring technology is widely used in the risk assessment of loan applicants. It can predict the credit risk of applicants based on the information provided by the borrowers, such as their historical data and the data from banking system. Based on the data provided by a financial institution, this paper focuses on the credit risk analysis and evaluation based on machine learning algorithms, including Logistic Regression algorithm, Decision Tree algorithm, and Random Forest algorithm. What’s more, this paper completes data preprocessing, variable selection, WOE coding discretization and credit scorecard creation. The basic score of this credit scorecard is 750 points. The probability of default will double when the score is reduced by every 60 points. The experimental results exhibit machine learning algorithms are feasible approaches to evaluate credit. Besides, within the study’s training and testing samples, such objective evaluation parameters as precision, recall, AUC, KS, and F1 score, which indicate Random Forest algorithm, Decision Tree algorithm, and Logistic Regression algorithm can all apply to financial risk analysis." @default.
- W3199312185 created "2021-09-27" @default.
- W3199312185 creator A5031488428 @default.
- W3199312185 creator A5054109702 @default.
- W3199312185 creator A5069764715 @default.
- W3199312185 creator A5084514388 @default.
- W3199312185 creator A5087811347 @default.
- W3199312185 date "2020-12-01" @default.
- W3199312185 modified "2023-09-23" @default.
- W3199312185 title "The Application Study of Credit Risk Model In Financial Institution via Machine-learning Algorithms" @default.
- W3199312185 cites W2090499458 @default.
- W3199312185 cites W2956640534 @default.
- W3199312185 cites W2972710025 @default.
- W3199312185 cites W3014951338 @default.
- W3199312185 cites W3025209066 @default.
- W3199312185 cites W3040219594 @default.
- W3199312185 cites W3045991306 @default.
- W3199312185 cites W3046045515 @default.
- W3199312185 cites W3121588992 @default.
- W3199312185 doi "https://doi.org/10.1109/icisce50968.2020.00284" @default.
- W3199312185 hasPublicationYear "2020" @default.
- W3199312185 type Work @default.
- W3199312185 sameAs 3199312185 @default.
- W3199312185 citedByCount "1" @default.
- W3199312185 countsByYear W31993121852023 @default.
- W3199312185 crossrefType "proceedings-article" @default.
- W3199312185 hasAuthorship W3199312185A5031488428 @default.
- W3199312185 hasAuthorship W3199312185A5054109702 @default.
- W3199312185 hasAuthorship W3199312185A5069764715 @default.
- W3199312185 hasAuthorship W3199312185A5084514388 @default.
- W3199312185 hasAuthorship W3199312185A5087811347 @default.
- W3199312185 hasConcept C10138342 @default.
- W3199312185 hasConcept C11413529 @default.
- W3199312185 hasConcept C119857082 @default.
- W3199312185 hasConcept C151956035 @default.
- W3199312185 hasConcept C154945302 @default.
- W3199312185 hasConcept C162324750 @default.
- W3199312185 hasConcept C169258074 @default.
- W3199312185 hasConcept C178350159 @default.
- W3199312185 hasConcept C187736073 @default.
- W3199312185 hasConcept C199004533 @default.
- W3199312185 hasConcept C2777764128 @default.
- W3199312185 hasConcept C2779601481 @default.
- W3199312185 hasConcept C41008148 @default.
- W3199312185 hasConcept C84525736 @default.
- W3199312185 hasConceptScore W3199312185C10138342 @default.
- W3199312185 hasConceptScore W3199312185C11413529 @default.
- W3199312185 hasConceptScore W3199312185C119857082 @default.
- W3199312185 hasConceptScore W3199312185C151956035 @default.
- W3199312185 hasConceptScore W3199312185C154945302 @default.
- W3199312185 hasConceptScore W3199312185C162324750 @default.
- W3199312185 hasConceptScore W3199312185C169258074 @default.
- W3199312185 hasConceptScore W3199312185C178350159 @default.
- W3199312185 hasConceptScore W3199312185C187736073 @default.
- W3199312185 hasConceptScore W3199312185C199004533 @default.
- W3199312185 hasConceptScore W3199312185C2777764128 @default.
- W3199312185 hasConceptScore W3199312185C2779601481 @default.
- W3199312185 hasConceptScore W3199312185C41008148 @default.
- W3199312185 hasConceptScore W3199312185C84525736 @default.
- W3199312185 hasLocation W31993121851 @default.
- W3199312185 hasOpenAccess W3199312185 @default.
- W3199312185 hasPrimaryLocation W31993121851 @default.
- W3199312185 hasRelatedWork W3199312185 @default.
- W3199312185 hasRelatedWork W3204641204 @default.
- W3199312185 hasRelatedWork W4212963941 @default.
- W3199312185 hasRelatedWork W4239706975 @default.
- W3199312185 hasRelatedWork W4283016678 @default.
- W3199312185 hasRelatedWork W4283313480 @default.
- W3199312185 hasRelatedWork W4312707991 @default.
- W3199312185 hasRelatedWork W4321636153 @default.
- W3199312185 hasRelatedWork W4322731370 @default.
- W3199312185 hasRelatedWork W4366151905 @default.
- W3199312185 isParatext "false" @default.
- W3199312185 isRetracted "false" @default.
- W3199312185 magId "3199312185" @default.
- W3199312185 workType "article" @default.